EMBEDDED AI: INTELLIGENCE ON DEVICES

Serge Pacome Bosson, Ing. Radek Holota, Ph.D, prof. Ing. Václav Šmídl, Ph.D.

MOTIVATION

Deploy Machine Learning Algorithms onto an Embedded System.

WHAT IS AI AND DEEP LEARNING?

- Artificial intelligence (AI): Using human-like intelligence to solve tasks.
- Machine learning (ML): Algorithm uses data to find patterns.
- Deep learning (DL): Very large algorithms using raw data input.
- Machine learning provides significant advantages over classical computing:
 - \circ Scalability
 - Less R&D effort
 - \circ More accurate

Artificial Intelligence The science and engineering of making intelligent systems

Machine Learning

The field of study that gives computers the ability to learn without being explicitly programmed

Deep Learning

A technique to perform machine learning algorithms inspired by human brain's own network of neurons.

WHERE DO WE USE AI ?

- Drive assistant
- Machine Vision.
- Fault diagnosis.
- Robotics.
- Security and home Automation cameras.
- Speech recognition, text analysis, translation.
- And Many More!

AI INFERENCE

- Edge AI: run ML models where data is generated.
 - Algorithms run on embedded systems.
- Cloud AI: run ML models on cloud servers.
 - Algorithms run on data centers.
- Benefits of Edge AI:
 - Reduced latency.
 - Improved privacy and security.
 - Enhanced energy efficiency.
 - Real-time decision-making.

HARDWARE FOR EMBEDDED AI

The brain of an embedded AI device is usually based on:

- Microprocessor (CPU).
- Graphical processing unit (GPU).
- Field programmable gate array (FPGA).
- Application specific integrated circuit (ASIC).

AI INFERENCE

Embedded AI | Application development flow

Al inferencing (4) (5) (6) Model Export Model Deployment Model Integration

ML COMPILER FRAMEWORK FOR CPU AND GPU: OSRT TECHNOLOGY

Deep learning programming | Flexible, easy & HW agnostic

ML COMPILER FRAMEWORK FOR FPGA AND ASIC : HLS TECHNOLOGY

CAS STUDY: FUNCTION APPROXIMATION IN EMBEDDED SYSTEMS

Function approximation based on machine learning algorithms can find practical application in electrical engineering:

- Flux linkages approximation.
- Online fault diagnosis.
- Al robotics.
- Advanced control in power electronics and drives.
- Optimization problems.
- Etc...

CAS STUDY: FUNCTION APPROXIMATION IN EMBEDDED SYSTEMS

Approximators that admit efficient implementation in conventional industrial computer systems:

- Multilayer perceptron (MLP).
- ID Convolutional neural network (1D CNN).
- Piece-wise affine (PWA).
- Lattice interpolated look-up table (LUT).

DATA PREPARATION

Evaluate the regression power of the reviewed approximators on the classical optimization problem called Rosenbrock's valey:

- Generated 10K points from the uniform distribution [0 1]^D.
 - D: Number of dimension: 2D 5D 8D 12D 15D.
- Compute D-dimensional Rosenbrock's function and scale them in the range of [0 1].

MODEL DESIGN

Multi-dimensional ML model design:

- **MLP** design using Tensorflow and Keras library:
 - Varying depth (number of layer) and width (number of neuron in each layer).
- **1-D CNN design using Tensorflow and Keras Library:**
 - 1 convolution layer and variations of number of filter with fixed kernel size equal to 2.
- **Lattice LUT design using Tensorflow lattice library:**
 - Varying the lattice sizes.
- PWA design using Python code source available
 - at <u>https://github.com/bemporad/PyPARC.git</u> and modify the code under Apache 2.0 license to add metrics for accuracy comparison with other ML models:
 - Varying number of partitions.

AI MODEL TRAINING: MLP Architectures

AI MODEL TRAINING: CNN Architectures

AI MODEL TRAINING: PWA Architectures

AI MODEL TRAINING: LATTICE Architectures

AI MODEL TRAINING: APPROXIMATORS

AI MODEL INFERENCE

- Our industrial computer systems are based on:
 - SoC FPGA Cortex-A Arm embedded Linux.
 - Cyclone V FPGA.
 - Texas instruments dual core MCU.

APPROXIMATORS IMPLEMENTATION: SOFTWARE DEVELOPMENT FLOW

FE<u>I-</u>,ZÇU.CZ

AI INFERENCE: Soc FPGA

gcc -g -Wall -I ./include -c src/read_csv.c -o obj/read_csv.o gcc -g -Wall -I ./include -c src/write_csv.c -o obj/write_csv.o

gcc -g -Wall -I ./include -c src/mlp_classifier.c -o obj/mlp_classifier.o

rm -rf MLP*

Done.

bosson@socfpga:~/codes/test1\$ make

Predictions: Predictions test example 4000 of 4000 Done. Output file predictions generated to ./data/data_test_output.csv. Execution time saved to ./data/execution_time.txt Time it took to execute: 1.098884 bosson@socfpga:~/codes/test1\$./MLP 2 64,64 relu,relu 1 identity data/test_dataset_5.csv 4000 6 5d Predictions: Predictions test example 4000 of 4000 Done. Output file predictions generated to ./data/data_test_output.csv. Execution time saved to ./data/execution_time.txt Time it took to execute: 1.130062 bosson@socfpga:~/codes/test1\$./MLP 2 64,64 relu,relu 1 identity data/test_dataset_8.csv 4000 9 8d Predictions: Predictions test example 4000 of 4000 Done. Output file predictions generated to ./data/data_test_output.csv. Execution time saved to ./data/execution_time.txt Time it took to execute: 1.173177 bosson@socfpga:~/codes/test1\$./MLP 2 64,64 relu.relu 1 identity data/test_dataset_12.csv 4000 13 12d Predictions: Predictions test example 4000 of 4000 Done. Output file predictions generated to ./data/data_test_output.csv. Execution time saved to ./data/execution_time.txt Time it took to execute: 1.233671 bosson@socfpga:~/codes/test1\$./MLP 2 64,64 relu,relu 1 identity data/test_dataset_15.csv 4000 16 15d Predictions: Predictions test example 4000 of 4000

bosson@socfpga:~/codes/test1\$./MLP 2 64,64 relu,relu 1 identity data/test_dataset_2.csv 4000 3 2d

FEL-ZCU.CZ

D

Al INFERENCE-SoC FPGA: Execution time vs Dimension: 4K streaming data.

APPLICATION EXAMPLE: DIAGNOSTIC OF SYNCHRONOUS GENERATOR

Main project is online diagnostic of large SG with power range of hundred MW used in a power plant:

- Collect data from sensors installed inside the SG.
- Design a binary classification for fault detection or design a regression model for fault prediction/state of the health estimation.
- Perform some feature engineering on the raw data then use a MLP to design the diagnostic model.
- Or use a 1DCNN directly on the raw data to design a diagnostic model.
- Deploy the model inference on embedded systems.

Thank You for your attention!

Serge Pacome Bosson

377 634 408 bosson@fel.zcu.cz fel.zcu.cz

