
TRANSFORMERS

• Attention is All You Need

• https://arxiv.org/pdf/1706.03762.pdf

• First transduction model relying entirely on self-

attention, without using sequence-aligned RNNs

or convolution

• Input Embedding – representation of the input

(sequence)

• Positional Encoding – element-wise addition of

position representation

• Multi-Head Attention – core building block

• Add & Norm – element-wise addition + Layer

Norm (https://arxiv.org/abs/1607.06450)

• Feed Forward – fully connected neural network

(two layers)

• Linear – one layer of fully connected NN

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/1607.06450

POSITIONAL ENCODING

𝑦 = 𝑊𝑒𝑢 + 𝑃𝐸

• 𝑊𝑒 ∈ ℝ
𝐸×𝑁 is the linear embedding – implemented as a Linear Layer

• 𝑢 ∈ ℝ𝑁×1 is the input vector (feature)

• 𝑃𝐸 ∈ ℝ𝐸×1 is the positional encoding

LEARNABLE POSITIONAL EMBEDDING

• In many cases it has been demonstrated that instead of sinusoidal PE, we can use a learnable

positional embedding.

• A learnable positional embedding is implemented as a learnable parameter (e.g.

torch.nn.Parameter(max_pos, model_dim) or torch.nn.Embedding(max_pos, model_dim).

• 𝑦 = 𝑊𝑒𝑢 + 𝑃𝐸(𝑝, ∶) or 𝑦 = 𝑊𝑒𝑢 +𝑊𝑝𝑥𝑝

• Where 𝑃𝐸 ∈ ℝ𝑀×𝐸 is the learnable pos. embedding, and 𝑃𝐸(𝑝, ∶) ∈ ℝ𝑀×1 is the embedding at

position 𝑝, alternatively 𝑊𝑝 ∈ ℝ
𝑀×𝐸 and 𝑥𝑝 ∈ ℝ

𝑀×1 is a one-hot-vector representing the

position 𝑝 (i.e., one is 𝑝th dimension).

• 𝑀 is the maximal allowed position in the input (i.e., the max. length)

LEARNABLE POSITIONAL EMBEDDING

• For a 2D learnable embedding (e.g., for images) each dimension is modeled by a different

Embedding.

• It might be implemented again as torch.nn.Parameter(max_pos, model_dim / 2) or

torch.nn.Embedding(max_pos, model_dim / 2).

• Then, we form the positional embedding as concatenation of the two.

• Note that the model_dim must be divisible by 2.

MULTI-HEAD ATTENTION

INFORMATION

FLOW

• Source:

• http://jalammar.github.io/ill

ustrated-transformer/

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

• High abstraction

• The Transformer consists of an

Encoder and a Decoder.

• Encoder "encodes" input sequence

into a latent/semantic/abstract

representation.

• Decoder "decodes" this

representation into the target

sequence.

• High abstraction

• Both the encoder and decoder are

"stacked“.

• The abstract representation of the

input sequence is produced at the

last "layer" of the encoder.

• It is inputted into each layer of the

decoder.

• Decoder outputs the sequence

token by token (auto-regressive),

or all tokens are outputted at once

(non-auto-regressive).

• Types of decoder

• Auto-regressive decoding is suitable

for tasks where the size of the output

is not known.

• Example is translation.

• Non-auto-regressive decoding is

suitable for tasks where the number

of outputs is known beforehand.

• Example is Pose Estimation.

• The encoder must process the

whole input sequence before the

decoder begins to decode.

• The Self-Attention module

produces an attentioned

representation of the inputs.

• A 2-layered FFN transforms the

representation further.

• The FFN is upscaling the

representation and then

downscaling to original dimension.

• i.e., 512 2048 512

• Self-Attention in detail

• The input embedding is transformed into Key,

Value, and Query vectors.

• W* are the Linear blocks in the self-attention

module.

• They define the dimensionality of the latent

representation of the Transformer.

• Value represents the input. It is changed based

on the attention through the layers.

• Key represents an offer of the current value.

• Query represents a question.

• Value: “Hey guys, I want to ask: query?”

• Other Values: “I have this answer: key. Do you

like it?”

• Value: “You answer is really answering my

query. I will pay great attention to you.” or

“Your answer really sucks! I will not pay

attention to you!”

• Self-Attention in detail

• Query and Key produce the attention.

• The self-attention for the first word is

computed as scalar products of the first

query and all the keys (Softmax).

• Thus, the self-attention for the 1st word

is a vector with dim equal to the

number of words in the input sequence.

• The self-attentioned representation (z)

of the word is the sum of all value

vectors weighted by the attention vector

(element-wise) (softmax X value).

• Multi-Head attention

• Simply, there are more parallel Scaled

Dot-Product Attentions.

• The outputs of them are concatenated.

• The concatenated matrix is

transformed by a Linear Layer to

produce the final attentioned

representation.

• Each parallel attention module can be

viewed as an expert in different field.

• The transformation must be into a

space of the embedding dimension.

• Residual connection

• In each encoder block, there are two

residual connections.

• One is at the Self-Attention module.

• Second is at the FFN module.

• The residual connection helps to

“transfer” the positional encoding

through the encoder blocks.

MASKING

• To be able to train auto-regressive models in batches, we need to introduce masking.

• Masking in the decoder is applied via a matrix multiplication.

• We define an upper triangular matrix with –inf as values (generally, we can use different masking).

• After the pre-softmax attention is

computed, we multiply (element-wise)

the resulting matrix with the mask

matrix.

• Then, after softmax is applied, the

attention becomes 0 at the masked

positions

PADDING

• To be able to train sequences of variable length (such as sentences), we need to introduce

padding.

• The padding is a “filler” that makes all sentences “max length” long.

• PyTorch provides a parameter, where we can use bool values.

• WARNING! False means there is no padding and True means that there is padding.

BERT: PRE-TRAINING OF DEEP BIDIRECTIONAL TRANSFORMERS FOR

LANGUAGE UNDERSTANDING

SELF-

SUPERVISION.

MASKED

AUTOENCODER
https://arxiv.org/pdf/2111.063

77.pdf

• Visual self-supervision is inspired by its language counterpart.

• It involves masking parts of an image and learning how to reconstruct them.

• This leads to a strong pre-trained foundation model that “understands” the

input modality.

https://arxiv.org/pdf/2111.06377.pdf
https://arxiv.org/pdf/2111.06377.pdf

DETR – DETECTION TRANSFORMER

https://arxiv.org/pdf/2005.12872.pdf

https://arxiv.org/pdf/2005.12872.pdf

RESULTS

VISION TRANSFORMER
An Image is worth 16 x 16 words: https://arxiv.org/pdf/2010.11929.pdf

https://arxiv.org/pdf/2010.11929.pdf

	Snímek 1: Transformers
	Snímek 2
	Snímek 3: Positional Encoding
	Snímek 4
	Snímek 5: Learnable Positional embedding
	Snímek 6: Learnable Positional embedding
	Snímek 7: Multi-head attention
	Snímek 8: Information flow
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19: masking
	Snímek 20: Padding
	Snímek 21: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
	Snímek 22: Self-supervision. Masked Autoencoder https://arxiv.org/pdf/2111.06377.pdf
	Snímek 23: DETR – DEtection transformer
	Snímek 24: Results
	Snímek 25
	Snímek 26: Vision Transformer

