
TRANSFORMERS



• Attention is All You Need

• https://arxiv.org/pdf/1706.03762.pdf

• First transduction model relying entirely on self-

attention, without using sequence-aligned RNNs 

or convolution

• Input Embedding – representation of  the input 

(sequence)

• Positional Encoding – element-wise addition of  

position representation

• Multi-Head Attention – core building block

• Add & Norm – element-wise addition + Layer 

Norm (https://arxiv.org/abs/1607.06450)

• Feed Forward – fully connected neural network 

(two layers)

• Linear – one layer of  fully connected NN

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/1607.06450


POSITIONAL ENCODING



𝑦 = 𝑊𝑒𝑢 + 𝑃𝐸

• 𝑊𝑒 ∈ ℝ
𝐸×𝑁 is the linear embedding – implemented as a Linear Layer

• 𝑢 ∈ ℝ𝑁×1 is the input vector (feature)

• 𝑃𝐸 ∈ ℝ𝐸×1 is the positional encoding



LEARNABLE POSITIONAL EMBEDDING

• In many cases it has been demonstrated that instead of  sinusoidal PE, we can use a learnable 

positional embedding.

• A learnable positional embedding is implemented as a learnable parameter (e.g.

torch.nn.Parameter(max_pos, model_dim) or torch.nn.Embedding(max_pos, model_dim).

• 𝑦 = 𝑊𝑒𝑢 + 𝑃𝐸(𝑝, ∶) or  𝑦 = 𝑊𝑒𝑢 +𝑊𝑝𝑥𝑝

• Where 𝑃𝐸 ∈ ℝ𝑀×𝐸 is the learnable pos. embedding, and 𝑃𝐸(𝑝, ∶) ∈ ℝ𝑀×1 is the embedding at 

position 𝑝, alternatively 𝑊𝑝 ∈ ℝ
𝑀×𝐸 and 𝑥𝑝 ∈ ℝ

𝑀×1 is a one-hot-vector representing the 

position 𝑝 (i.e., one is 𝑝th dimension).

• 𝑀 is the maximal allowed position in the input (i.e., the max. length)



LEARNABLE POSITIONAL EMBEDDING

• For a 2D learnable embedding (e.g., for images) each dimension is modeled by a different 

Embedding.

• It might be implemented again as torch.nn.Parameter(max_pos, model_dim / 2) or 

torch.nn.Embedding(max_pos, model_dim / 2).

• Then, we form the positional embedding as concatenation of  the two.

• Note that the model_dim must be divisible by 2.



MULTI-HEAD ATTENTION



INFORMATION 

FLOW

• Source:

• http://jalammar.github.io/ill

ustrated-transformer/

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/


• High abstraction

• The Transformer consists of  an 

Encoder and a Decoder.

• Encoder "encodes" input sequence 

into a latent/semantic/abstract 

representation.

• Decoder "decodes" this 

representation into the target 

sequence.



• High abstraction

• Both the encoder and decoder are 

"stacked“.

• The abstract representation of  the 

input sequence is produced at the 

last "layer" of  the encoder.

• It is inputted into each layer of  the 

decoder.

• Decoder outputs the sequence 

token by token (auto-regressive), 

or all tokens are outputted at once 

(non-auto-regressive).



• Types of  decoder

• Auto-regressive decoding is suitable 

for tasks where the size of  the output 

is not known.

• Example is translation.

• Non-auto-regressive decoding is 

suitable for tasks where the number 

of  outputs is known beforehand.

• Example is Pose Estimation.



• The encoder must process the 

whole input sequence before the 

decoder begins to decode.

• The Self-Attention module 

produces an attentioned

representation of  the inputs.

• A 2-layered FFN transforms the 

representation further.

• The FFN is upscaling the 

representation and then 

downscaling to original dimension.

• i.e., 512      2048      512



• Self-Attention in detail

• The input embedding is transformed into Key, 

Value, and Query vectors.

• W* are the Linear blocks in the self-attention 

module.

• They define the dimensionality of  the latent 

representation of  the Transformer.

• Value represents the input. It is changed based 

on the attention through the layers.

• Key represents an offer of  the current value.

• Query represents a question.

• Value: “Hey guys, I want to ask: query?”

• Other Values: “I have this answer: key. Do you 

like it?”

• Value: “You answer is really answering my 

query. I will pay great attention to you.” or 

“Your answer really sucks! I will not pay 

attention to you!”



• Self-Attention in detail

• Query and Key produce the attention.

• The self-attention for the first word is 

computed as scalar products of  the first 

query and all the keys (Softmax).

• Thus, the self-attention for the 1st word 

is a vector with dim equal to the 

number of  words in the input sequence.

• The self-attentioned representation (z) 

of  the word is the sum of  all value

vectors weighted by the attention vector 

(element-wise) (softmax X value).



• Multi-Head attention

• Simply, there are more parallel Scaled 

Dot-Product Attentions.

• The outputs of  them are concatenated.

• The concatenated matrix is 

transformed by a Linear Layer to 

produce the final attentioned

representation.

• Each parallel attention module can be 

viewed as an expert in different field.

• The transformation must be into a 

space of  the embedding dimension.



• Residual connection

• In each encoder block, there are two 

residual connections.

• One is at the Self-Attention module.

• Second is at the FFN module. 

• The residual connection helps to 

“transfer” the positional encoding 

through the encoder blocks.







MASKING

• To be able to train auto-regressive models in batches, we need to introduce masking.

• Masking in the decoder is applied via a matrix multiplication.

• We define an upper triangular matrix with –inf  as values (generally, we can use different masking).

• After the pre-softmax attention is

computed, we multiply (element-wise)

the resulting matrix with the mask

matrix.

• Then, after softmax is applied, the 

attention becomes 0 at the masked

positions



PADDING

• To be able to train sequences of  variable length (such as sentences), we need to introduce 

padding.

• The padding is a “filler” that makes all sentences “max length” long.

• PyTorch provides a parameter, where we can use bool values.

• WARNING! False means there is no padding and True means that there is padding.



BERT: PRE-TRAINING OF DEEP BIDIRECTIONAL TRANSFORMERS FOR

LANGUAGE UNDERSTANDING



SELF-

SUPERVISION.

MASKED 

AUTOENCODER
https://arxiv.org/pdf/2111.063

77.pdf

• Visual self-supervision is inspired by its language counterpart.

• It involves masking parts of  an image and learning how to reconstruct them.

• This leads to a strong pre-trained foundation model that “understands” the 

input modality.

https://arxiv.org/pdf/2111.06377.pdf
https://arxiv.org/pdf/2111.06377.pdf


DETR – DETECTION TRANSFORMER

https://arxiv.org/pdf/2005.12872.pdf

https://arxiv.org/pdf/2005.12872.pdf


RESULTS





VISION TRANSFORMER
An Image is worth 16 x 16 words: https://arxiv.org/pdf/2010.11929.pdf

https://arxiv.org/pdf/2010.11929.pdf
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