TRANSFORMERS

Output

Probabilities
| Softmax
1
| Linear
g ™
| Add & Norm =
Feed
Forward
t
r I ~ | Add & Norm Je=~
—{_Add &lNorm) Multi-Head
Feed Attention
Forward)) 7 Nx
| J—
Add & Norm
N)‘(T
—| Add & Norm] Y
Multi-Head Multi-Head
Attention Attention
At 2 At
— J . —
Positional Positional
\ + & .
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Attention is All You Need
https://arxiv.org/pdf/1706.03762.pdf

First transduction model relying entirely on self-
attention, without using sequence-aligned RNNs
or convolution

Input Embedding — representation of the input
(sequence)

Positional Encoding — element-wise addition of
position representation

Multi-Head Attention — core building block
Add & Norm — element-wise addition + Layer
Norm (https://arxiv.org/abs/1607.06450)
Feed Forward — fully connected neural network
(two layers)

Linear — one layer of fully connected NN

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/1607.06450

POSITIONAL ENCODING

Token Position

[

20

PFE (s 2i) = sin(pos/ 100002/ dmndal)

PE(pos,2i+1) = Cos(pos/l(][]()[}zifdmdel)

30

A0

Embedding Dimensian

100

075

025

[eRala]

—0.25

—0.50

—0.75

POSITIONAL : 1 (Y-8 0.0001 1 XTIl 0.0002| -0.42 [
ENCODING
+ - -
EMBEDDINGS X1 X2 X3 |
INPUT Je SUisS étudiant

A real example of positional encoding with a toy embedding size of 4

y =W,u+ PE

« W, € REXN is the linear embedding — implemented as a Linear Layer
« u € RV*! is the input vector (feature)
« PE € RE*!is the positional encoding

LEARNABLE POSITIONAL EMBEDDING

* In many cases it has been demonstrated that instead of sinusoidal PE, we can use a learnable
positional embedding.

» A learnable positional embedding is implemented as a learnable parameter (e.g.
torch.nn. Parameter(max_pos, model_dim) or torch.nn. Embedding(max_pos, model_dim).

° y:l/l/eu‘l'PE(p,:) or y:VVeu+VVpxp

e Where PE € RM*E is the learnable pos. embedding, and PE(p,:) € RM*! is the embedding at
position p, alternatively W, € R"** and x,, € R"*! is a one-hot-vector representing the
position p (1.e., one 1s pth dimension).

M 1s the maximal allowed position in the input (1.e., the max. length)

LEARNABLE POSITIONAL EMBEDDING

For a 2D learnable embedding (e.g., for images) each dimension 1s modeled by a different
Embedding.

It might be implemented again as torch.nn. Parameter(max_pos, model_dim / 2) or
torch.nn. Embedding(max_pos, model_dim / 2).

Then, we form the positional embedding as concatenation of the two.

Note that the model_dim must be divisible by 2.

MULTI-HEAD ATTENTION

Multi-Head Attention Scaled Dot-Product Attention
1
Linear ' QKT 1
i Attention(Q, K, V') = softmax(i 1% MatMul I
Concat 4 4
) [SoftMax |
= 1
Scaled Dot-Product
Attention DA h I MHSK'{GDH
ﬁl ﬁl ‘J —
I_|near Lmear Lme f
r [’ [‘ [MatMul |
V K Q Q K \

INFORMATION
FLOW

* Source:

* http://jalammar.github.i0/1ll
ustrated-transformer/

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

High abstraction

The Transformer consists of an
Encoder and a Decoder.

Encoder "encodes" input sequence
into a latent/semantic/abstract
representation.

Decoder "decodes" this
representation into the target
sequence.

ENCODERS

DECODERS

High abstraction

Both the encoder and decoder are
"stacked“.

The abstract representation of the
input sequence 1s produced at the
last "layer" of the encoder.

It is inputted into each layer of the
decoder.

Decoder outputs the sequence
token by token (auto-regressive),
or all tokens are outputted at once
(non-auto-regressive).

am a student

)

' N
ENCODER DECODER
J
4 4
_
ENCODER DECODER
v
@ £
4
ENCODER DECODER
J
4 4
1
ENCODER DECODER
=
E &
g
ENCODER DECODER
A 4
4
ENCODER DECODER
)
A K

|

etudiant

Types of decoder

Auto-regressive decoding is suitable
for tasks where the size of the output
is not known.

Example 1s translation.
Non-auto-regressive decoding is
suitable for tasks where the number
of outputs is known beforehand.
Example 1s Pose Estimation.

3\

am a student
\

?
e ‘))
ENCODER DECODER
" J
4 4
a R
ENCODER DECODER
. v
4 4
r A
ENCODER DECODER
»
[y 4
ENCODER DECODER
\ =
& &
(N
ENCODER DECODER
.
4 4
r ~
ENCODER DECODER
. J
A E

|

suis etudiant

The encoder must process the
whole input sequence before the
decoder begins to decode.

The Self-Attention module
produces an attentioned
representation of the inputs.

A 2-layered FFN transforms the
representation further.

The FFN i1s upscaling the
representation and then

downscaling to original dimension.

i1.e., 512 — 2048 — 512

r [L]

T

> —

A

¢

Feed Forward Feed Forward

Neural Network

[Neural Networkj

t t

Self-Attention

x1 (]

Thinking Machines

Self-Attention in detail Input

The input embedding is transformed into Key,
Value, and Query vectors.

W* are the Linear blocks in the self-attention
module. Queries
They define the dimensionality of the latent
representation of the Transformer.

Value represents the input. It is changed based

on the attention through the layers.

Key represents an offer of the current value. Keys
Query represents a question.

Value: “Hey guys, I want to ask: query?”

Other Values: “I have this answer: key. Do you

like it?”

Value: “You answer is really answering my Values
query. I will pay great attention to you.” or

“Your answer really sucks! I will not pay

attention to you!”

Embedding

0 0 T B I
1] L[]
[T 1] L1
[T 1] [T 1]

Input

Self-Attention in detail

Embedding
Query and Key produce the attention. Queries
The self-attention for the first word 1s Keys

computed as scalar products of the first
query and all the keys (Sofimax). Values
Thus, the self-attention for the 1st word

is a vector with dim equal to the >core

number of words in the input sequence. Divide by 8 (v,)
The self-attentioned representation (z)

of the word is the sum of all value Softmax
vectors weighted by the attention vector

(element-wise) (softmax X value). Sogmax

Sum

Multi-Head attention

Simply, there are more parallel Scaled
Dot-Product Attentions.

The outputs of them are concatenated
The concatenated matrix is
transformed by a Linear Layer to
produce the final attentioned
representation.

Each parallel attention module can be
viewed as an expert in different field.
The transformation must be into a
space of the embedding dimension.

2) Multiply with a weight
matrix that was trained
jointly with the model

1) Concatenate all the attention heads

3) The result would be the © matrix that captures information
from all the attention heads. We can send this forward to the FFNN

]

Residual connection

In each encoder block, there are two
residual connections.

One 1s at the Self-Attention module.
Second 1s at the FFN module.

The residual connection helps to
“transfer” the positional encoding
through the encoder blocks.

; #
‘,,(Add & Normalize
: R 3
: (Feed Forward) (Feed Forward)
PO S 4
[T TT] [TTT]
A A
P LayerNorm(+)
' A A
- LT [T] T]
: A A
' (Self-Attention
: 3 }
D ¢ | I I N . LT
POSITIONAL é é
ENCODING
x1 EE x2
Thinking Machines

ENCODER #2

ENCODER #1

E (Feed Forward) (Feed Forward)
e T P 3

,.(Add & Normalize)

% 4

Add & Normalize }

i (Self-Attention)

POSITIONAL
ENCODING
X1 | I | X2 4 | | l

Thinking Machines

(Softmax

L

(Linear
/'y
........ > DECODER #2
4 s
:»(Add & Normalize)

8 i a0 e i T)

o o"(Add & Normalize
| R %
:’(Encoder-Decoder Attention
escooe-n . IITXIITCLI LI LLLY ¥

;(Add & Normalize
4 4

(Self-Attention

Decoding time step: 1@3 4 56

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT

f

Kencdee Vencdec (Linear + Softmax
i 6 f
) d
ENCODERS DECODERS
> .
' ' '
LT T[] L] LI [T 11
LLIT] (LI1] [L1] HEEN
Je suis étudiant PREVIOUS

OUTPUTS

MASKING

* To be able to train auto-regressive models in batches, we need to introduce masking.

Masking in the decoder is applied via a matrix multiplication.

We define an upper triangular matrix with —inf as values (generally, we can use different masking).

After the pre-softmax attention is

computed, we multiply (element-wise) This article-is-amazng -O — 00 —0O0 — OO-
the resulting matrix with the mask Thisartiole isasasing O O —00 —0OO
matrix.

« Then, after softmax is applied, the This article is amazing 0 0 0 — 00
attention becomes 0 at the masked This article is amazing O O O O

positions

PADDING

* To be able to train sequences of variable length (such as sentences), we need to introduce

padding.

* The padding 1s a “filler” that makes all sentences “max length” long.

* PyTorch provides a parameter, where we can use bool values.

« WARNING! False means there is no padding and T7ue means that there 1s padding.

1 0

—_ O =
sl (el [T

Sequence
I Padding

1

1
0
1

4

4

O =~ = O

1
4
1

0
4
4

=

False
False
False

_FaZse

False
False
False
False

False
False
False
False

False True
False False

True True

False False

True |
False
True
True

BERT: PRE-TRAINING OF DEEP BIDIRECTIONAL TRANSFORMERS FOR

LANGUAGE UNDERSTANDING

ﬁp Mask LM Mask LM \
i <t *

L

-E EDE]E {)
Masked Sentence A Masked Sentence B

\ Unlabeled Sentence Aand B Pair /

Pre-training

Start/End Spam

A =

a—a—
Cedm) - (O)0een] - Celn) o)) (Gw)
...... P
........ ...
BERT s o s s s = = IR O BERT
-- (e lEadlE)= e] [| & | [][Eeml[&] [&]
T e T e B — g T e T e o L
Tok 1 (T{JRNW[[SEF]][Tﬂk1]___ [TuchW

x*

Paragraph
Question Answer Pair /

Fine-Tuning

SELF-

SUPERVISION. o

MASKED (\

AUTOENCODER el i

https://arxiv.org/pdf/2111.063 ' . s

77.pdf 4 lencoder o decoder > l....
. P EEC
T
. target
Y

 Visual self-supervision is inspired by its language counterpart.
It involves masking parts of an image and learning how to reconstruct them.

» This leads to a strong pre-trained foundation model that “understands” the
input modality.

https://arxiv.org/pdf/2111.06377.pdf
https://arxiv.org/pdf/2111.06377.pdf

DETR — DETECTION TRANSFORMER

https://arxiv.org/pdf/2005.12872.pdf

--------------- T e T I

i backbone | encoder | decoder 1! Prediction Neads | —
| |

! setof image features:i ¥) I P ———

| ! I class,

:@{ | FEEEE a: iy =

I |

| 1! h I FEN L/ DO

= L] ! transformer N transformer . object

= 1!

i encoder :: decoder i' — CE::
| |

| | S S o ! -

| ooooog--o LN 7 object

I . :

| _ positional encoding_ ____________________ L . ol S

https://arxiv.org/pdf/2005.12872.pdf

RESULTS

Model GFLOPS/FPS #params AP APs5o AP75 APs APy APL
Faster RCNN-DC5 320/16 166M 39.0 60.5 42.3 21.4 43.5 52.5
Faster RCNN-FPN 180/26 42M 40.2 61.0 43.8 24.2 43.5 52.0
Faster RCNN-R101-FPN 246/20 60M 42.0 62.5 45.9 25.2 45.6 54.6
Faster RCNN-DChH+ 320/16 166M 41.1 61.4 44.3 22.9 45.9 55.0
Faster RCNN-FPN+ 180/26 42M 42.0 62.1 45.5 26.6 45.4 53.4
Faster RCNN-R101-FPN+ 246/20 60M 44.0 63.9 47.8 27.2 48.1 56.0
DETR 86/28 41M 42.0 62.4 44.2 20.5 45.8 61.1
DETR-DC5 187/12 41M 43.3 63.1 459 22.5 47.3 61.1
DETR-R101 152/20 60M 43.5 63.8 46.4 21.9 48.0 61.8

DETR-DC5-R101 253/10 60M 44.9 64.7 47.7 23.7 49.5 62.3

Fig. 7: Visualization of all box predictions on all images from COCO 2017 val set
for 20 out of total N = 100 prediction slots in DETR decoder. Each box prediction is
represented as a point with the coordinates of its center in the 1-by-1 square normalized
by each image size. The points are color-coded so that green color corresponds to small
boxes, red to large horizontal boxes and blue to large vertical boxes. We observe that
each slot learns to specialize on certain areas and box sizes with several operating
modes. We note that almost all slots have a mode of predicting large image-wide boxes
that are common in COCO dataset.

VISION TRANSFORMER

An Image 1s worth 16 x 16 words: https://arxiv.org/pdf/2010.11929.pdf

Transformer Encoder

MLP

|

)
Norm |

Vision Transformer (ViT)

' | MLP \
Ball Head

Transtformer Encoder

i
I
I
I
|
|
| | [
|
|
iy I [1]
e - g @3) a) e @5 |
|
I
| L J
- I
|
|

#* Extra learnable | | | 2

[class] embedding Lmear Projection of Flattened Patches
Norm

|||||||
i 12 0 A

[Embedded
Patches

https://arxiv.org/pdf/2010.11929.pdf

	Snímek 1: Transformers
	Snímek 2
	Snímek 3: Positional Encoding
	Snímek 4
	Snímek 5: Learnable Positional embedding
	Snímek 6: Learnable Positional embedding
	Snímek 7: Multi-head attention
	Snímek 8: Information flow
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19: masking
	Snímek 20: Padding
	Snímek 21: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
	Snímek 22: Self-supervision. Masked Autoencoder https://arxiv.org/pdf/2111.06377.pdf
	Snímek 23: DETR – DEtection transformer
	Snímek 24: Results
	Snímek 25
	Snímek 26: Vision Transformer

