

Blind Image Deconvolution based on Deep Image Prior

Antonie Brožová

Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague Institute of Information Theory and Automation, CAS

8.12.2023

・ 一 マ ト ・ 日 ト ・

Blind Image Deconvolution	DIP 0000	DIP in BID	Stochasticity 000	Sharp image priors
Outline				

- Blind image deconvolution
- Deep image prior
- SelfDeblur DIP in BID
- Stochasticity
- Variational deep image prior

Blurred image is convolution of sharp image and point spread function (PSF) (assuming space-invariant PSF)

$D = X \circledast K + n$

Image: A image: A

Blind	Image	Deconvolution
0000	0000	

DIP

DIP in BID

Stochasticity 000

Sharp image priors

Blind image deconvolution

Minimize $\|\boldsymbol{D} - \boldsymbol{K} \otimes \boldsymbol{X}\|$

DIP 2000 DIP in BID

Stochasticity 000 Sharp image priors

Blind image deconvolution is highly ill-posed

DIP 0000 DIP in BID

Stochasticity

Sharp image priors

How to measure the quality of a reconstruction

$$\begin{aligned} \mathsf{PSNR}(\boldsymbol{x},\boldsymbol{y}) &= 10 \log_{10} \left(\mathsf{max}_{x}^{2} / \mathsf{MSE}(\boldsymbol{x},\boldsymbol{y}) \right), \\ \mathsf{PSNR}\mathsf{-}\mathsf{GT}(\boldsymbol{x}) &:= \mathsf{PSNR}(\boldsymbol{x},\boldsymbol{x}_{GT}), \\ \mathsf{PSNR}\mathsf{-}\mathsf{NB}(\boldsymbol{x}) &:= \mathsf{PSNR}(\boldsymbol{x},\boldsymbol{x}_{NB}), \\ \mathsf{ISNR}(\boldsymbol{x}) &:= \mathsf{PSNR}\mathsf{-}\mathsf{GT}(\boldsymbol{x}) - \mathsf{PSNR}\mathsf{-}\mathsf{GT}(\boldsymbol{x}_{NB}) \end{aligned}$$

Blind	Image	Deconvolution	
0000	000		

DIP

DIP in BID

Stochasticity

Sharp image priors

-

Priors for BID

Antonie Brožová BID based on DIP

Blind Image Deconvolution	DIP 0000	DIP in BID	Stochasticity 000	Sharp image priors
Priors for BID				

Methods that use prior

- MAP approach
- Variational Bayes

Histogram of gradients

æ

Blind Image Deconvolution	DIP 0000	DIP in BID 00000000	Stochasticity 000	Sharp image priors

Algorithms based on Deep Image Prior outperform bayesian methods...

돈 돈 돈

- Structure of a neural network is a "prior" for the clean image.
- Operates without any training dataset!
- Denoising, superresolution, inpainting.
- Variants of U-net convolutional network.

¹ D. Ulyanov, A. Vedaldi, and V. Lempitski. Deep image prior, CVPR, 2018

DIP o●oo DIP in BID

Stochasticity

< A > <

Sharp image priors

DIP prefers smooth images

Figure: Comparison of the speed of learning of a sharp image, a blurred image, and an image with artifacts displayed on the right side of the figure.

Low frequencies are learned faster

Frequency in an image = speed of change in pixel intensities \rightarrow details are high frequency information

- 4 同 ト 4 ヨ ト

< D > < A > < B > < B >

Sharp image priors

DIP rather chooses a good path towards the solution

H. Li et al.. Visualizing the Loss Landscape of Neural Nets. NeurIPS, 2018.

Blind Image Deconvolution DIP DIP in BID Stochasticity Sharp image priors

SelfDeblur² - DIP for blind image deconvolution

 2 D. Ren and et al., Neural blind deconvolution using deep priors, CVPR, 2020.

・ロト ・ 同ト ・ ヨト ・

Blind Image Deconvolution	DIP 0000	DIP in BID o●oooooo	Stochasticity 000	Sharp image priors

Why should DIP be useful for blind image deconvolution?

→ < ∃ →</p>

э

Good starting point

PSF initialized as a constant array

$$\mathcal{L}(\boldsymbol{\theta}_{k},\boldsymbol{\theta}_{x}|\boldsymbol{x}) = \alpha \mathcal{L}_{BID}(\boldsymbol{\theta}_{k},\boldsymbol{\theta}_{x}) + (1-\alpha) \mathcal{L}_{Unet}(\boldsymbol{\theta}_{x}|\boldsymbol{x}),$$

Initialization of PSF - 500 iterations with α = 0.9

No-blur target:

Ground-truth target:

(日)

DIP 2000 DIP in BID

Stochasticity

Sharp image priors

Choice of the right path - learning rate of the PSF

Antonie Brožová

BID based on DIP

DIP

DIP in BID ooooo●oo Stochasticity

| 4 同 ト 4 三 ト 4

Sharp image priors

Choice of the right path - optimiser setting

Figure: Deblurring of the problematic image from the Kodak dataset. The sharp image is displayed on the left and the PSFs used for blurring are above the resulting scatterplots. VDIP-Ex denotes VDIP-Extreme, VDIP-SP VDIP-Sparse, and S-SDB 0.99 SimplerSDB with $\beta_1^x = 0.99$.

Blind Image Deconvolution	DIP 0000	DIP in BID oooooo€o	Stochasticity 000	Sharp image priors

Choice of the right path - optimiser setting

Figure: Sensitivity of the solution to the optimizer hyper-parameters β_1^x in terms of PSNR-NB and ISNR for three runs on the Levin dataset.

Blind Image Deconvolution	DIP 0000	DIP in BID ooooooo●	Stochasticity 000	Sharp image priors

DIP does not act as a prior distribution, the combination of DIP and optimization simply finds a good path towards the solution.

Blind Image Decon	volution	DIP 0000	DIP in BID 00000000	Stochasticity ●00	Sharp image priors

Stochasticity - GPU

▲ 同 ▶ ▲ 国

돈 돈 돈

DIP

DIP in BID 00000000 Stochasticity 0●0 Sharp image priors

Stochasticity - Initialization

Antonie Brožová BID based on DI

Blind Image Deconvolution	DIP 0000	DIP in BID 00000000	Stochasticity ○○●	Sharp image priors

How to regularize it better?

æ

æ

・ロト ・回ト ・ ヨト・

Bayesian regularization of SelfDeblur

- SelfDeblur can be interpreted as the MAP approach with uniform priors for both the sharp image and the PSF
- SelfDeblur is sensitive to hyperparameters
- Adding TV-regularization of the U-net output to the loss function has been somewhat unsuccessful

• (1) • (1) • (1)

Combination of DIP and traditional sharp image prior 3 in variational Bayes

- Sparse prior
- Extreme-channel prior
- DIP used for the sharp image
- Optimization of ELBO

³ Huo, D., Masoumzadeh, A., Kushol, R., and Yang, Y.-H. (2023). Blind image deconvolution using variational deep image prior.

- 4 同 1 4 三 1 4 三 1

DIP

DIP in BID

Stochasticity 000

▲ (日) ▶ ▲ (日)

Sharp image priors 00●000

Comparison of the algorithms

Figure: Three runs on the Levin dataset performed by SelfDeblur, SimplerSDB, VDIP-Sparse, and VDIP-Extreme.

Blind Image Deconvolution	DIP 0000	DIP in BID	Stochasticity 000	Sharp image priors 000●00

VDIP is more stable

Pretraining

Figure: Effect of pretraining on three runs on the Levin dataset.

э

< 17 > <

Blind Image Deconvolution	DIP	DIP in BID	Stochasticity	Sharp image priors
	0000	00000000	000	0000●0

VDIP is more stable

SSIM loss

Figure: Effect of switching from MSE loss to SSIM loss after 2000 iterations and pretraining on three runs on the Levin dataset.

Blind Image Deconvolution	DIP	DIP in BID	Stochasticity	Sharp image priors
	0000	00000000	000	00000●
Conclusion				

DIP is not a prior for the sharp image in BID - combination of DIP and optimization finds a good path towards the solution and does not get stuck in an unpleasant minima.

Even though deep neural networks improve the reconstruction they need to be regularized as well \rightarrow we are going back to the traditional methods