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MOTIVATION - ANTENNA FOR GROUND STATION



CUBESATS

▶ Initiative to offer non-profit organizations to launch small satellites.
▶ Low-Earth-Orbit(LEO), attitude 250-900 km.
▶ Size must be within 0.1 × 0.1 × 0.1 m
▶ Communication frequencies Ka-band(26-40 GHz), X-band(8-12 GHz), S-band (2-4 GHz)
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TEAM

▶ University of West Bohemia
• Ing. Ivo Veřtát Ph.D. (VZLUSAT, hardware )
• Ing. Michal Pokorný Ph.D. (hardware, measurement)

▶ Czech Technical University
• prof. Ing. Miloš Mazánek, CSc. (project leader, antenna design, experiments)
• doc. Ing. Jiří Masopust, CSc. (hardware, concepts, experiments design)
• doc. Ing. Pavel Hazdra, Ph.D. (antenna design, CST simulations)
• Ing. Jan Kraček (control synthesis, CST simulations)
• Ing. Milan Švanda Ph.D. (experiment design)
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TRACKING PARABOLIC ANTENNAS HAVE SOME
ISSUES



RADIATION PATTERN
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BEAM FORMING

Amplitudes and phases of the excitation
currents that provide the desired radiation
pattern.
▶ Electric field in spherical coordinates

f(ϑ, φ) = f e(ϑ, φ) ·S(ϑ, φ) ·M(ϑ, φ), (1)

▶ Array factor

S(φ, ϑ) =
N∑

n=1

M∑
m=1

Inm exp
[
j · k0 · n · dx sin(θ) cos(φ) + k0 · m · dy sin(ϑ) sin(φ)

]
,

(2)



RADIATION PATTER SYNTHESIS

Deterministic methods

Benchmarks, validation

Orthogonal methods

Beam synthesis Calibration

Optimization

Fast scripts Full wave simulations Experiments
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DETERMINISTIC METHODS

▶ Array factor is image of I in 2-D Discrete Fourier Transform

S(θ, ϕ) =
∑

m

∑
n

I[m,n]e−jk(md sin(θ) cos(ϕ)+nd sin(θ) sin(ϕ)), (3)

▶ can be seen also as a 2-D Z transform

S(z1, z2) =
∑

m

∑
n

I[m,n]z−m
1 z−n

2 . (4)

where

e−jkd sin(θ) cos(ϕ) ↔ z−1
1 (5)

e−jkd sin(θ) sin(ϕ) ↔ z−1
2 (6)
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DETERMINISTIC METHODS

▶ Deterministic methods - are similar to
FIR filter design

▶ Inverse Fourier transform
▶ Windowing
▶ Zero placement
▶ Dolph-Chyebyshev method
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WHY IT DOESN’T WORK?

▶ There are physical reasons - low number of elements, mutual couplings
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ORTHOGONAL METHODS

▶ Radiation pattern can be written in the form

f g = fψ · I, (7)

▶ where f g is the desired radiation pattern, I is a vector of excitation and fψ are basis functions,
▶ Optimal excitation can be expressed as

Î = (f T
ψ · fψ)−1f T

ψ · f g, (8)
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MEASUREMENT
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WHY IT DOESN’T WORK?
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OPTIMIZATION

▶ What we want? Maximal magnitude of the main lobe. Maximally narrow main lobe. Maximal
suppression od side lobes.

Î = argminF(f g(I)) (9)

▶ Goal functions

F1 = −|S(ϑr, φr)|, (10)

F1 = |Ŝ1| − |Ŝ2|, (11)

F1 = ∥Ŝ − Ŝr∥2, (12)
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AND WHAT ABOUT QUANTIZATION?
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(a) Rectangular window
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(b) Hamming window

75 50 25 0 25 50 75
[ ]

60

50

40

30

20

10

0

S a
 [d

B]

{'n bits = 2'}
{'n bits = 3'}
{'n bits = 4'}
{'n bits = 5'}
{'n bits = 6'}
{'n bits = 7'}
{'n bits = 8'}

(c) Dolph-Chebychev -30 dB
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MULTI-CRITERIAL OPTIMIZATION
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(b) Convergence

Obrázek. Comparison of algorithms NSGA II, EPS MOEA, SMPSO
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MULTI-CRITERIAL OPTIMIZATION

▶ First objective function - shape of radiation pattern (array factor)
▶ Second objective function - influence of quantization, measure of robustness

F2 = ∥grad (F1)∥
F2 = |F1 − F̄1|

▶ Other objective functions? Efficiency, beam width, . . .
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(b) 3-bit quantization
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(c) Comparison of array factors
obtained by different methods with
3-bit quantized excitation for ϑ = 0◦
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(d) Comparison of array factors
obtained by different methods with
3-bit quantized excitation for ϑ = 30◦
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RESULTS

▶ We can obtain result which is more resistant against quantization errors than standard
synthesis methods.

▶ The number of evaluations of the goal function is to high (200 individuals in one generation at
least 100 generations).

▶ What we can do?

21 / 27



OPTIMIZATION OF OPTIMIZATION

▶ Magnitudes and phases on particular patches are not arbitrary. There are symmetries
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▶ The matrix of excitation can be obtained as tensor product of two polynomial We can optimize
coefficients of these two polynomials or roots of these polynomials.

I = a ⊗ b (13)
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OPTIMIZATION OF COEFFICIENTS AND ZEROS
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TRUSTED REGION BAYESIAN OPTIMIZATION - TURBO

▶ Trust region strategy to handle high dimensional problem.
▶ Hyperrectangle X centered at the best solution found so far.
▶ The objective function f is modeled using Gaussian Process (GP)

f (x) ≈ GP(µ,K(x, x′))

▶ Acquisition Function - Expected Improvement (EI)
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COMPETITION TURBO VS OTHERS
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CONCLUSIONS

▶ Calibration remain challenging problem.
▶ Trust Regions Bayesian optimization seems to be best choice in case of single objective

optimization.
▶ There are project for multi-objective optimization within BoTorch.
▶ Robust design.
▶ Sparse arrays, nonuniform arrays.
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Thank You for Your Attention

27 / 27


