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Motivation

Question: Can we approximate any function using a neural network?

Example
Let us consider a very simple continuous non-linear function of one variable that is bounded
on a compact domain, for example

f (x) = x2, x ∈ [−1, 1].

If we approximate the function by a single- or multi-layer feed-forward neural network (FNN),
what precision can be guaranteed theoretically and what precision can be achieved
practically? Is there a gap?

Adcock, B. and Dexter, N. (2021), The gap between theory and practice in function
approximation with deep neural networks. SIAM J. Math. Data Sci. 3(2), 624–655, ISSN 2577-0187,
DOI 10.1137/20M131309X, Zbl 1483.65028, MR4253805
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Motivation

Notes on precision:
▶ Machine epsilon (sometimes also called machine precision) ε is an upper bound on the

relative approximation error due to rounding in floating point arithmetic.
▶ In numerical analysis, machine epsilon is dependent on the type of rounding used and is

also called unit roundoff, which has the symbol bold Roman u.
▶ Alternative definition (much more widespread, less formal): machine epsilon is the

difference between 1 and the next larger floating point number, i.e. it is independent of
rounding method and may be equivalent to u or 2u, i.e. ε equals the value of the unit in
the last place relative to 1, i.e. b−(p−1), where b is the base and p is the precision and
the unit roundoff is u = ε/2 in round-to-nearest mode, and u = ε in round-by-chop
(towards zero).

▶ In the IEEE 754 standard for floating-point arithmetic, the machine epsilon ε is:
▶ 2−23 ≈ 1.19 × 10−7 in single precision (binary32),
▶ 2−53 ≈ 2.22 × 10−16 in double precision (binary64).

▶ Definition ε/2 is used in LAPACK, Scilab, etc.
whereas ε is used in ISO C, C/C++, Python, Mathematica, MATLAB, etc.
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Motivation

Notes on speed: many commonly-available GPUs are optimized to perform single precision
computations much more quickly, for example:
▶ NVIDIA Tesla P100 GPUs operate at 4.7 TFLOPS in double vs. 9.3 TFLOPS in single

precision, implying a 1:2 ratio for single vs. double precision computation time.
▶ On the other hand, common off-the-shelf consumer GPUs such as the NVIDIA GeForce

GTX 1080 Ti operate at 0.355 TFLOPS in double precision vs. 11.5 TFLOPS in single
precision, implying a 1:32 ratio for single vs. double precision computation time.
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Light introduction - “UATs for Dummies”

Many papers use rather vague statements (not speaking about calling theorem a definition)
that usually appear in different levels of detail (Hohman, Conlen, Heer, and Chau, 2020):

1. Neural networks can approximate any function that exists. However, we do not
have a guaranteed way to obtain such a neural network for every function.

April 14, 2023 Jan Pospíšil: Universal Approximation Theorems 6 / 44

http://www.fav.zcu.cz/en
http://www.kma.zcu.cz/en


MATHEMATICS
DEPARTMENT OF Universal Approximation Theorems

Light introduction - “UATs for Dummies”

Many papers use rather vague statements (not speaking about calling theorem a definition)
that usually appear in different levels of detail (Hohman, Conlen, Heer, and Chau, 2020):

2. For any function, there is guaranteed to be a neural network with a finite number
(but perhaps a large number) of neurons so that for every possible input, x , the
network outputs a close approximation of the function’s value f (x). However, we
do not have any guarantees on how to train a neural network to learn the correct
mapping parameters. There exists
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Light introduction - “UATs for Dummies”

Many papers use rather vague statements (not speaking about calling theorem a definition)
that usually appear in different levels of detail (Hohman, Conlen, Heer, and Chau, 2020):

3. From mathematical theory of artificial neural networks, the universal approxima-
tion theorem states that a FNN with a single hidden layer containing a finite number
(but perhaps a large number) of neurons can approximate continuous functions on
compact subsets of Rn, as long as the activation function is bounded and contin-
uous. While this says that a simple neural network can represent a wide variety of
interesting functions under appropriate parameters, it does not describe how to al-
gorithmically learn such parameters.
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Light introduction - “UATs for Dummies”

Many papers use rather vague statements (not speaking about calling theorem a definition)
that usually appear in different levels of detail (Hohman, Conlen, Heer, and Chau, 2020):

3. From mathematical theory of artificial neural networks, the universal approxima-
tion theorem states that a FNN with a single hidden layer containing a finite number
(but perhaps a large number) of neurons can approximate continuous functions on
compact subsets of Rn, as long as the activation function is bounded and contin-
uous. While this says that a simple neural network can represent a wide variety of
interesting functions under appropriate parameters, it does not describe how to al-
gorithmically learn such parameters.

There exist also “visual proofs”, e.g. one by Michael Nielsen:
http://neuralnetworksanddeeplearning.com/chap4.html
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Arbitrary-width case

Theorem (Cybenko (1989))
Let In = [0, 1]n denote the n-dimensional unit cube and let C(In) be the space of continuous

functions on In. Let σ be any continuous sigmoidal function, i.e. σ(t) →
{

1 as t → +∞,

0 as t → −∞.
Then finite sums of the form

G(x) =
N∑

j=1
αjσ(wT

j x + θj)

are dense in C(In) with respect to the supremum norm. In other words, given any f ∈ C(In)
and ε > 0, there is a sum, G(x), of the above form, for which

|G(x) − f (x)| < ε for all x ∈ In.
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Arbitrary-width case

Proof: Idea in 1D (n = 1), different than in the paper.

Let H(x) := lim
w→+∞

σ(w · x) =
{

1, x > 0,

0 x < 0,
(Heaviside step function).

In operational calculus, useful answers seldom depend on which value is used for H(0).
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Arbitrary-width case

https://commons.wikimedia.org/wiki/File:Step_function_approximation.png
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Arbitrary-width case

H(x ; b) := lim
w→+∞

σ(w · (x − b)) =
{

1, x > b,

0 x < b,
(shifted Heaviside step function).

P(x ; b, δ) := H(x ; b) − H(x ; b + δ) (piece).
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Arbitrary-width case

Since f is continuous, it is also right-continuous, i.e. lim
x↓b

f (x) = f (b) for all b ∈ In, i.e.

∀ε > 0 ∃δ > 0 ∀x ∈ In : x ∈ (b, b + δ) ⇒ |f (x) − f (b)| < ε

|f (x) − f (b)P(x ; b, δ)| < ε.

We can repeatedly construct a piece-wise constant approximation of the function

f̂ (x) :=
N∑

j=1
αjP(x , bj , δj),

where αj = f (bj) and bj+1 := bj + δj , j = 1, . . . , N.
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Arbitrary-width case

Since P is constructed by sigmoidal functions, this actually proves the theorem.
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Example: f (x) = x2, x ∈ [−1, 1] (and equidistant partitioning)
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Example: f (x) = x2, x ∈ [−1, 1] (and equidistant partitioning)
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Example: f (x) = x2, x ∈ [−1, 1] (and equidistant partitioning)

Question: Why would we ever need a FNN with more than one hidden layer?
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MATHEMATICS
DEPARTMENT OF Arbitrary-width case

Example: f (x) = x2, x ∈ [−1, 1] (and equidistant partitioning)

Question: Why would we ever need a FNN with more than one hidden layer?
▶ Simple calculation gives us

max |f (x) − f̂ (x)| ∼ O
( 1

N

)
.

▶ Straightforward implication: in order to achieve a machine precision ε, we would need
really a huge number of neurons N:

1
N ≤ ε ⇒ N ≥ 1

ε

▶ In single precision (32-bit) arithmetic: N ≥ 8, 403, 361,
in double precision (64-bit) arithmetic: N ≥ 4.5 × 1015.
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Arbitrary-width case

Some notes:
▶ From piece-wise constants we could proceed to polynomials. In particular the

Stone-Weierstrass theorem states that any continuous function defined on a compact set
can be uniformly approximated by a polynomial function. This means that for any
continuous function f (x) defined on a compact set K , and for any ε > 0, there exists a
polynomial P(x) such that

|f (x) − P(x)| < ε for all x ∈ K .

We can construct a FNN with a single-hidden layer to approximate monomial function
of the form xk , k ∈ N and consequently to approximate any polynomial P(x).

▶ Note that approximation of a function by the Taylor’s polynomial has a very strong
assumption (f must be many times differentiable), but this can lead to a significant
reduction of N, needed number of neurons in the hidden layer.

▶ Funahashi (1989) worked on the same problem as Cybenko (1989) independently.
▶ Two-layered FNN (i.e. the one that does not have any hidden layers) is not capable of

approximating general nonlinear continuous functions (Widrow and Lehr, 1990).
April 14, 2023 Jan Pospíšil: Universal Approximation Theorems 15 / 44
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Increasing the depth

Some notes:
▶ Multilayer FNNs are universal approximators (Hornik, Stinchcombe, and White, 1989):

standard multilayer FNNs with as few as one hidden layer using arbitrary squashing
functions are capable of approximating any Borel measurable function from one finite
dimensional space to another to any desired degree of accuracy, provided sufficiently
many hidden units are available

▶ A standard multilayer FNN can approximate any continuous function to any degree of
accuracy if and only if the network’s activation functions are not polynomial (Leshno,
Lin, Pinkus, and Schocken, 1993).

▶ Review of results from 60s-80s by Widrow and Lehr (1990), from 90s by Pinkus (1999);
Scarselli and Chung Tsoi (1998).
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Increasing the depth

Mhaskar, H. N. and Poggio, T. (2016), Deep vs. shallow networks: an approximation theory
perspective. Anal. Appl., Singap. 14(6), 829–848, ISSN 0219-5305,
DOI 10.1142/S0219530516400042, Zbl 1355.68233, MR3564936

Abstract: The paper briefly reviews several recent results on hierarchical architectures for
learning from examples, that may formally explain the conditions under which Deep
Convolutional Neural Networks perform much better in function approximation problems
than shallow, one-hidden layer architectures. The paper announces new results for a
non-smooth activation function — the ReLU function — used in present-day neural
networks, as well as for the Gaussian networks. We propose a new definition of relative
dimension to encapsulate different notions of sparsity of a function class that can possibly be
exploited by deep networks but not by shallow ones to drastically reduce the complexity
required for approximation and learning.
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Arbitrary-depth case

Gripenberg, G. (2003), Approximation by neural networks with a bounded number of nodes at
each level. J. Approx. Theory 122(2), 260–266, ISSN 0021-9045,
DOI 10.1016/S0021-9045(03)00078-9, Zbl 1019.41018, MR1988304

Abstract: It is shown that the general approximation property of feed-forward multilayer
perceptron networks can be achieved in networks where the number of nodes in each layer is
bounded, but the number of layers grows to infinity. This is the case provided the activation
functions are twice continuously differentiable and not linear.
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Arbitrary-depth case

Yarotsky, D. (2017), Error bounds for approximations with deep ReLU networks. Neural
Networks 94, 103–114, ISSN 0893-6080, DOI 10.1016/j.neunet.2017.07.002

Abstract: We study expressive power of shallow and deep neural networks with piece-wise
linear activation functions. We establish new rigorous upper and lower bounds for the
network complexity in the setting of approximations in Sobolev spaces. In particular, we
prove that deep ReLU networks more efficiently approximate smooth functions than shallow
networks. In the case of approximations of 1D Lipschitz functions we describe adaptive
depth-6 network architectures more efficient than the standard shallow architecture.
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Low discrepancy point set

Challenge 1: Approximate a given real function of two variables using ANN of your choice in
order to achieve the best possible precision.
▶ Analytical formula is NOT provided (although it is probably not difficult to guess it -

please do not share this particular finding among other participants),
▶ Function f (x , y) is non-linear (it is neither a polynomial), for (x , y) ∈ D = [0, 1]2 it is

bounded and continuous.
▶ For training purposes, there are 1.2 × 106 sample points in challenge1_trainset.csv

(ca 61 MB), it is a CSV file with 1.2 × 106 rows and three columns x , y , f (x , y). Points
[x , y ] ∈ D were generated using the 2D Sobol’s low discrepancy sequence (see also
challenge1_generator.m). All numbers are provided in double precision.

▶ I leave it on you how many sample points you take for training your ANN.
Questions: What precision can you achieve (in the maximal norm)?
Once your ANN is trained, how quickly can you calculate one million function values?
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Low discrepancy point set
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Visualisation of the sample points
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Robert Cox Merton (*1944)
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1969 Merton’s portfolio problem (consumption vs. investment)
1971 Merton’s model for pricing European options (equity = option in

firm’s asset)
1971 Theory of rational option pricing,
1973 ICAPM International Capital Asset Pricing Model
First one who uses continuous-time default probabilities to model
options on the common stock of a company, i.e. he uses stochastic
calculus in finance

Columbia University
California Institute of Technology
Massachusetts Institute of Technology

Merton, R. C. (1973), Theory of rational option pricing. Bell J. Econ. 4(1), 141–183, ISSN
0005-8556, DOI 10.2307/3003143, Zbl 1257.91043, MR0496534
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Myron Samuel Scholes (*1941)
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1973 The pricing options and corporate liabilities,
Together with Fischer Sheffey Black (1938-1995), the famous
Black-Scholes formula, a fair price for a European call option (i.e. the
right to buy one share of a given stock at a specified price and time).

Stanford University

Black, F. and Scholes, M. (1973), The pricing of options and corporate liabilities. J. Polit.
Econ. 81(3), 637–654, ISSN 0022-3808, DOI 10.1086/260062, Zbl 1092.91524, MR3363443
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Prize in Economic Sciences in Memory of Alfred Nobel
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1997 Nobel Prize in Economics:

for a new method to determine the value of derivatives

Robert C. Merton Myron S. Scholes
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Black-Scholes-Merton (BSM) model

In BSM model, underlying asset price is modelled as a geometric Brownian motion (gBm):

dS(t) = rS(t) dt + σS(t) dW (t),

where r > 0 is the constant interest rate, σ > 0 is the volatility and W (t) is the Wiener
process. Let c(t, x) be the value of the European call option (with strike price K and
maturity T ) at time t if S(t) = x . The c(t, x) satisfies the Black-Scholes-Merton PDE

ct(t, x) + rxcx (t, x) + 1
2σ2x2cxx (t, x) − rc(t, x) = 0 , for all t ∈ [0, T ), x ≥ 0

with terminal condition c(T , x) = (x − K )+. It is a backward parabolic PDE. Boundary
conditions must also be provided: c(t, 0) = 0 for all t ∈ [0, T ] and

lim
x→+∞

[c(t, x) − (x − e−r(T−t)K )] = 0 for all t ∈ [0, T ].

This slide is NOT needed for the challenge.
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Black-Scholes-Merton formula

The solution of the Black-Scholes-Merton PDE is

c(t, x) = xN(d+(τ, x)) − Ke−rτ N(d−(τ, x)) , 0 ≤ t < T , x > 0,

where τ = T − t is time to maturity, N is the CDF for standard normal distribution

N(y) = 1
2 [1 + erf(x/

√
2)] = 1√

2π

∫ y

−∞
e−z2/2 dz = 1√

2π

∫ +∞

−y
e−z2/2 dz

and

d±(τ, x) = 1
σ

√
τ

[
ln x

K +
(

r ± 1
2σ2

)
τ

]
.

This formula IS needed for the challenge, it is implemented as the myblsprice (both in
MATLAB and Python and in a more general form that considers also the dividend rate q).
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Black-Scholes-Merton implied volatility

Let C∗(K , T ) denotes the current market price of a call option with strike K and time to
maturity T . Implied volatility σimp(K , T ) is such a value of the volatility parameter that
when substituted into the BSM formula, it gives the market price C∗(K , T ):

C∗(K , T ) = BSM(S, K , r , T , σimp(K , T )).

Calculation of the implied volatility can be converted into the root-finding problem (this is
how blsprice works):

f (σ) = BSM(S, K , r , T , σ) − C∗(K , T ).

Another possibility is to consider the optimization problem min
σ

f 2(σ) (see myblsimpv).
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Black-Scholes-Merton implied volatility

Challenge 2: Use ANN to approximate the inverse Black-Scholes-Merton formula, i.e. train
your ANN in order to calculate the implied volatilities as precisely as possible.
▶ For training purposes no dataset is prepared, use the myblsprice directly.
▶ For inspiration see also Liu, Oosterlee, and Bohte (2019).
▶ Basis points (BPS), or bips, are a unit of measure used in finance to describe the

percentage change in the value of financial instruments or the rate change in an index or
other benchmark. One basis point is equivalent to 0.01% (1/100th of a percent) or
0.0001 in decimal form.

Questions: What precision can you achieve?
Once your ANN is trained, how quickly can you calculate one million implied volatilities?

Liu, S., Oosterlee, C., and Bohte, S. (2019), Pricing options and computing implied
volatilities using neural networks. Risks 7(1), 16, ISSN 2227-9091, DOI 10.3390/risks7010016
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Universal Approximation Theorems
Motivation
Light introduction - “UATs for Dummies”
Arbitrary-width case
Arbitrary-depth case
Bounded depth and bounded width case

Challenge 1
Approximation of a function of two variables

Challenge 2
Black-Scholes-Merton implied volatility

Challenge 3
Heston model calibration to option prices

Further reading

April 14, 2023 Jan Pospíšil: Universal Approximation Theorems 34 / 44

http://www.fav.zcu.cz/en
http://www.kma.zcu.cz/en


MATHEMATICS
DEPARTMENT OF Challenge 3

Heston model calibration to option prices

Arguably the most popular mean-reverting stochastic volatility model is the Heston (1993)
model

dS(t) = rS(t) dt +
√

v(t)S(t) dW̃ S(t),

dv(t) = −κ(v(t) − θ) dt + σ
√

v(t) dW̃ v (t),

dW̃ S(t) dW̃ v (t) = ρ dt,

where θ represents a long term variance, κ is a reversion rate and σ denotes volatility of
volatility parameter. Popularity of the model comes from its tractability and from the
existence of a semi-closed solution for European option prices.

Heston, S. L. (1993), A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343, ISSN 0893-9454,
DOI 10.1093/rfs/6.2.327, Zbl 1384.35131, MR3929676
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Heston-Lewis’ formula

C(S, v , τ) = S − Ke−rτ 1
2π

∫ ∞+i/2

−∞+i/2
e−ikX Ĥ(k, v , τ)

k2 − ik dk,

where X = ln(S/K ) + rτ and Ĥ(k, v , τ) is the so called fundamental transform:

Ĥ(k, v , τ) = exp
(

2κθ

σ2

[
q g − ln

(1 − he−ξq

1 − h

)]
+ vg

( 1 − e−ξq

1 − he−ξq

))
, with

g = b − ξ

2 , h = b − ξ

b + ξ
, q = σ2τ

2 ,

ξ =

√
b2 + 4(k2 − ik)

σ2 ,

b = 2
σ2

(
ikρσ + κ

)
.

Lewis, A. L. (2000), Option Valuation Under Stochastic Volatility: With Mathematica code.
Newport Beach, CA: Finance Press, ISBN 9780967637204, Zbl 0937.91060, MR1742310
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Heston model calibration to option prices

Challenge 3: Train ANN for calibration of Heston model to option prices
▶ For training purposes, there are ca 80 thousand sample surfaces in

trainset_prices_4.csv (ca 136 MB), it is a CSV file with 80 052 rows and 94
columns. In the first six columns there are six model parameters (r , v0, κ, θ, σ, ρ) and the
remaining 88 values are the option value prices calculated at the rectangular lattice
points – there are 8 different maturities τ with 11 strikes K each.

▶ Model parameters were generated using the 6D Sobol’s low discrepancy sequence,
trainset is pre-processed (cleaned, parameters and prices are already scaled, etc.).

▶ Model is highly sensitive to changes in the parameter values, especialy in the volatility of
volatility parameter σ, i.e. the desired error upper bound for each model parameter
should be 10−6 (in order to get 1 bps precision for prices).

Questions: What precision can you achieve (say RMSE in the six parameter values)?
Once your ANN is trained, how quickly can you calculate one million function values?
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Heston model calibration to option prices
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Heston model calibration to option prices
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▶ neural networks, approximation theory, and finite precision computation: Wray and
Green (1995)

▶ universality in convolution networks: Zhou (2020)
▶ universal function approximation on graphs: Brüel-Gabrielsson (2020)

▶ Choose Your Weapon: Survival Strategies for Depressed AI Academics: Togelius and
Yannakakis (2023)
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Summary of today’s talk:

Universal Approximation Theorems
Motivation
Light introduction - “UATs for Dummies”
Arbitrary-width case
Arbitrary-depth case
Bounded depth and bounded width case

Challenge 1
Approximation of a function of two variables

Challenge 2
Black-Scholes-Merton implied volatility

Challenge 3
Heston model calibration to option prices

Further reading
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Thank you for your attention!

Jan Pospíšil, honik@kma.zcu.cz
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