present

Active Learning: classical and deep approaches

Vaclav Smidl

AI tea, FEL ZCU,

29 March 2023

Motivation: Money, Money, Money!

Text Document clasification

Input : document files .txt

Output : document category, i.e. discrete label

Standard task in ML:

- 1. create embedding (e.g. Bert) for each document
- 2. train a classifier for the embedding, e.g. NN

Challenge:

- 1TB of documents of an international company suspected of a crime
- · classify all documents into those relevant/irrelevant for the court
- a lawyer can judge the content for 500\$/hour

Active learning

- 1. start with an initial batch of documents with labels, and the rest unlabeled
- 2. Select from unlabeled the `most interesting' documents for labeling
- 3. Obtain labels for the selected documents
- 4. Train Model,
- 5. GOTO 2

Many ways to define the `interesting' samples: heuristics \mathbf{x} theoretically grounded.

Special Case of Decision making under uncertainty

Theory of optimal/rational decision making.

Decision : variable that we are free to select (document, experimental conditions)

Knowledge : data acquired so far (labeled documents, data), $oldsymbol{D}$

Uncertainty : outcome of the experiment (label)

Utility : What is the `useful' outcome of the experiment

Solution:

$$x^* = rg \max_{x \in \mathcal{X}} \mathsf{E}_{y|D} U(y, D, x)$$

Cases:

- 1. Bayesian optimization : Minimization Utility + Gaussian Process
- 2. Parametric Active Learning: Mutual infomration + Parametric Model
- 3. Deep Active Learning: (motivated) heuristics

Special case #1: Bayesian optimization

Classical technology:

- Močkus, Jonas. *On Bayesian methods for seeking the extremum*. In Optimization Techniques IFIP Technical Conference: Novosibirsk, July 1–7, 1974, pp. 400-404. Springer Berlin Heidelberg, 1975.
 - first definition
- Jones, Donald R., Matthias Schonlau, and William J. Welch. *Efficient global optimization of expensive black-box functions*. Journal of Global optimization 13, no. 4 (1998): 455.
 - expected improvement
- Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas. *Taking the human out of the loop:* A review of Bayesian optimization. Proceedings of the IEEE 104, no. 1 (2015): 148-175.
 - nice tutorial

Why to learn?

- (almost) all theoretical concepts have analytical solutions,
- useful for blackbox optimization, hyperparameter tuning,

Human-based optimization

Find minimum of a function given by point-wise evaluation

1 x0=[-1.,0.,1.,2.,3.,4.];

Add points to x0 by interaction with audience...

1 xh=[x0..., 1.5,0.5,0.25,0.8,0.9,-0.5,-0.2,2.5,0.618,2.75,2.71,0.71,3.5,-.4,-0.8,-0.7];

🎈 activelearning.jl — Pluto.jl

How fast it was?

Evolution of the best minima as a function of iterations

Fast optimization as Decision making

Decision : variable that we are free to select, $oldsymbol{x}$

Knowledge : data acquired so far $D = [X, Y], X = [x_1, \dots, x_n], Y = [y_1, \dots, y_n],$

Uncertainty : function value at \boldsymbol{x} , $\boldsymbol{f}(\boldsymbol{x})$

Utility : useful outcome is when $f(x) < \min(X)$

Solution:

$$x^* = rg \max_{x \in \mathcal{X}} \int \chi(f(x) < \min(X)) p(f(x)|D) df(x)$$

Gaussian process: distribution over functions

A time continuous function $\{f(x); x \in \mathcal{X}\}$ is a Gaussian process if for every finite set of indeces $\{x_1, \ldots, x_n\}$ are Gaussian distributed, given functions

mean:
$$\mu(x)$$

kernel: $k(x, x')$

Consider function values f(x), f(x'), for two points x, x' with choices $\mu(x) = 0$, $k(x, x) = \nu$, then:

$$p(f(x),f(x')| heta) = \mathcal{N}\left(egin{bmatrix} 0 \ 0 \end{bmatrix},egin{bmatrix}
u+\sigma & k_ heta(x,x') \ k_ heta(x,x') &
u+\sigma \end{bmatrix}
ight),$$

Gaussian distribution has very nice analytical properties:

$$p(f(x)|x,x_1,f(x_1)) = \mathcal{N} \left(\mu_{x_1}(x),\sigma_{x_1}(x)
ight), \ \mu_{x_1}(x) = k(x,x_1)f(x_1) \ \sigma_{x_1}(x) = (
u + \sigma - k(x,x_1)^2/(
u + \sigma)) \ p(f(x)) = \mathcal{N}(0,
u)$$

Read:

• Rasmussen, Carl Edward, and Christopher KI Williams. Gaussian processes for machine learning. Vol. 1. Cambridge, MA: MIT press, 2006.

Gaussian Process Kernels

Sensitivity to hyper-parameters:

- kernel K(): KernelFunctions.SqExponentialKernel ✓
- prior scale $\nu = : \bigcirc$
- length-scale $\ell =:$
- noise variance $\sigma =: \bigcirc$
- 1 begin xt=[1.5,2.5]; yt=f(xt); end;
- 1 testGP=buildgp(xt,[v,l,σ],Kf);

Estimating hyper-parameters

The fit before was done for known valued of hyperparameters $\pmb{\theta}$, i.e.

$$p(f(x)|x_1,y_1,x, heta)$$

Since it is a proper likelihood, we can compute best parameter value $\hat{\pmb{ heta}}$ for given points

$$\hat{ heta} = rg\min - \log p(Y|X, heta)$$

where $X = [x_1, \ldots, x_n], Y = [y_1, \ldots, y_n]$

• poor but simple!

 $1 \quad \Theta \Theta = [1.0, 1., -5];$

<pre>1 opt = Optim.optimize(p->-logpdf(buildgp(x0,p),f(x0)), 00, LBFGS());</pre>	

Where it is most likely that the function has a minimum?

In each point x' the function value f(x') has a Gaussian distribution

$$f(x) \sim G(\mu(x), \sigma(x))$$

Probability of a value being lower than a threshold is an analytical formula:

$$P(f(x) < \min(X)|Y,X) = \int_{-\inf}^{\min(X)} G(\mu_X(x),\sigma_X(x))df(x)
onumber \ = (\min(X) - \mu_X(x))\mathrm{cdf}(Z). + \sigma_X(x)\mathrm{pdf}(Z)
onumber \ Z = (\min(X) - \mu_X(x))/\sigma_X(x)$$

EI (generic function with 1 method)

🎈 activelearning.jl — Pluto.jl

• Evaluate the point with highest probability of occurence of lower value.

Repeating the procedure for each point

nextx (generic function with 2 methods)

Is AI smarter than us?

🎈 activelearning.jl — Pluto.jl

Special Case #2: Active Learning with parametric models

The goal in not to find a good model with as few data as possible.

- maximum likelihood will not help (asymptotics)
- parameter estimates `compress' information from the data

$$p(\theta|X,Y) \propto p(Y|X,\theta)p(\theta)$$

• the more data I have, the more narrow the the parameter estimates are (if the data are informative!)

Decision making concepts:

Uncertainty: model parameters $\boldsymbol{\theta}$, can include discrete (order!)

Utility: new observation is useful if it improves parameter estimates

The goal si to gain information

Decision making task where utility is the prior-posterior gain in Shannon information is the *mutual information* between new observation $I(\theta; y)$

$$\begin{split} U(x) &= E_y(I(\theta; y)) = \int_y I(\theta; y) \\ &= -\int \int \log(p(\theta|y, x, D)) \, p(\theta, y|x, D) \, d\theta \, dy + \int \log(p(\theta, D)) \, p(\theta|D) \, d\theta \\ &= -\int \int \log(p(y|\theta, x, D)) \, p(\theta, y|x, D) \, dy \, d\theta + \int \log(p(y|x, D)) \, p(y|x, D) \, dy, \\ p(y|x, D) &= \int p(y|x, \theta, D) d\theta \end{split}$$

Theoretically nice, practially intractable for interesting problems.

Approximations to the rescue:

- entropy of prediction
 - \circ denoted $H(y|x,\hat{ heta}) = -\int \log p(y|x,D,\hat{ heta}) p(y|x,D,\hat{ heta}) dy$
 - for Gaussian distribution, $H(y) = 0.5 \log(2\pi\sigma^2) + 0.5$
- for sampled parameters (ensembles)

$$p(heta) = \{ heta_1 \dots heta_n\} \ p(y|x) = 1/n \sum_i p(y|x, heta_i) \ U(x) = 1/n \sum_i H(y|x, heta_i) - H(y|x)$$

• can be evaluated efficienty : note that the parameters are the same for all considered samples!

How it works for previous example?

Same model: GP

Different utility: Mutual Information instead of expected improvement

nextxv (generic function with 2 methods)

Why it is just grid-refining?

- answers is in the assumptions
- •

•

Kernel is the same for all points!

Learning with parametric models

Consider situation that we know the model but not its the parameters

$$f(x)=rac{ heta_3\cos(heta_1x+ heta_2)}{ heta_5x^2+|x|+ heta_4}$$

Found initial step size ϵ : 0.4

plotParam (generic function with 1 method)

1 plotParam(x0, f(x0), allY)

nextxm (generic function with 1 method)

100%

Found initial step size $\varepsilon\colon$ 0.00625

100%				
Found ∈: 0.4	initial	step	size	

100% Found initial step size ϵ : 0.2

100%

Found initial step size $\varepsilon\colon$ 0.00625

100%

Found initial step size $\varepsilon \colon$ 0.025

100%

Found initial step size $\varepsilon\colon$ 0.2

100%

Found initial step size $\varepsilon\colon$ 0.0015625

100%

Found initial step size $\varepsilon \colon$ 0.025

100%

Found initial step size ε : 0.025

100%

Found initial step size $\varepsilon\colon$ 0.025

Farmed initial atom aina

100%

Step of GP: 🧲

🎈 activelearning.jl — Pluto.jl

.

Special case #3: Active learning with Neural Networks

Uncertainty : output of neural network for given input

Utility : Approximation of Mutual information

Approximations - almost heuristics

Classifiers are often trained using the `crossentropy' loss

• it is exactly the conditional approximation of predictive entropy !

If we want better uncertainty? Use ensembles

- Dropout MC is a strategy sampling dropout variables even in prediction
- Deep Ensembles = train NN from different initial conditions
 - inefficient for changing only a single value
 - warm start: initialize new weight by random perturbation of previous

How about Utility function:

- Entropy: sum-of-entropy entropy-of-sum
- BALD: Houlsby, Neil, Huszar, Ferenc, Ghahramani, Zoubin, and Lengyel, Mate. Bayesian active learning for classification and preference learning. arXiv preprint arXiv:1112.5745,2011.

Active Learning for Document Classification

Benchmark data:

- Tweets Dataset
- News Category Dataset
- Fake News,
- Fake News Detection

Embeddings:

- Fast Text
- LASER
- RoBERTa

More details:

• Sahan, Marko, Vaclav Smidl, and Radek Marik. Active learning for text classification and fake news detection. In 2021 International Symposium on Computer Science and Intelligent Controls (ISCSIC), pp. 87-94. IEEE, 2021.

Simple vs. complex models: Exploration-exploitation tradeoff

Sensitivity to document embedding

Taking Human out of the loop

People can not be part of the training loop, constantly waiting for new assignmets.

Prefer to process batches of, say 10, documents.

Optimal batch selection:

- much harder job
- selection of a single sample is easy
- selection of a pair is harder: n^2 possibilities!

Fear:

• selecting 10 best independently has low value

Heuristics:

• cluster the samples, select representant of each cluster (HAC)

Comparison on Document classification

- Sahan, Marko, Vaclav Smidl, and Radek Marik. *Batch Active Learning for Text Classification and Sentiment Analysis*. In Proceedings of the 2022 3rd International Conference on Control, Robotics and Intelligent System, pp. 111-116. 2022.
- Slower learning than with one sample loop
- Overall best: single network with cross-entropy and cold/Warm-start after each acquisition batch
 the documents are diverse enough ?
- Ensembles/Dropout MC useful for the fake news dataset

L2 =

Take home message

- active learning is a way to to reduce cost of training
 - can be also applied to testing
- Danger:
 - non i.i.d. sampling
 - being stuck in local extreme
- Remedies:
 - use stochastcicity (warm starts, reinitializations)
 - you may waste a few samples but gain information
- Active line of our research finetuning to their specifics:
 - controller tuning
 - design optimization
 - material experiment design
 - plasma physics experiments/simulations
- New application?