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Real problem to be solved! Example in curve fitting

Fit by a linear function:

y1 = ax1 +b1, +e1
y2 = ax2 +b1 +e2,
...

...
...

...

In matrix notation θ = [a, b]T :

y = Xθ + e,

e = y − Xθ

Minimize
∑

i e2
i = eT e:

θ̂ = (X T X)−1X T y. σ̂2 = 1
n eT e,

ŷ = X θ̂ + σ̂e

Overconfidence! The answer is correct only
asymptotically (O(n−1))

▶ we never have infinite dataset or large
enough

▶ we need to handle the information with
care!

-5 0 5 10 15
x

-4

-2

0

2

4

6

8

10

12

14

16

y

Data

data
true f

-5 0 5 10 15
x

-4

-2

0

2

4

6

8

10

12

14

16

y

Data

data
true f
predition
95% interval



Real problem to be solved! Example in curve fitting

In matrix notation θ = [a, b]T :

y = Xθ + e,

e = y − Xθ

Minimize
∑

i e2
i = eT e:

θ̂ = (X T X)−1X T y. σ̂2 = 1
n eT e,
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Roadmap:

Theory Shallow models Deep models
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Bayesian (Laplace) philosophy

Bayesian =

someone who uses probability calculus to
quantify uncertainty.

Justification: Uncertainty and randomness have the
same effect on decision-making.

Distance of a star: measuring distance to stars has large observation error, say
we measure 10ly ±1ly

Can I say that the distance of the star has Normal distribution:
N (10, 1)?
▶ No: the distance is not random
▶ Yes: you are a Bayesian seeing distance as a degree of

belief,
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Probability of an event

Frequentist:

Probability=Frequency of an event:

P(x) = # realizations
# trials

P(x = 1) = 1
6

Bayesian:

Frequency:

P(Sparta beats Slavia) = 133
294 ≈ 45%

Degree (state) of belief:

P(x |d) = P(d |x)P(x)∑
x P(d |x)P(x)

P(Sparta vs. Slavia = 1) = 1/1.8
Same probability calculus

Different 1 role of prior P(x), applications and methods
1. Product rule (Chain rule)

P(X , Y ) = P(X |Y )P(Y ),
= P(X)P(Y |X)

2. Sum rule (Marginalization)

P(X) =
∑

Y P(X , Y )
P(Y ) =

∑
X P(X , Y )

1Book: The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma Code,
Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy
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All you need is rules: Rules of probability

1. Product rule (Chain rule)

P(X , Y ) = P(X |Y )P(Y ),
= P(X)P(Y |X)

2. Sum rule (Marginalization)

P(X) =
∑

Y P(X , Y )
P(Y ) =

∑
X P(X , Y )

Derived P(X) =
∑

Y P(X |Y )P(Y )

Continuous distributions: p(x) = dF (x) (engineering notation)

2. Sum for Continuous
distribution

p(x) =
∫

p(x , y)dy



Bayes Rule

From chain rule:

P(X |Y )P(Y ) = P(Y |X)P(X).

P(X |Y ) = P(Y |X)P(X).
P(Y )

Application: θ is a parameter, D is a random observation

p(θ|D) = p(D|θ)p(θ)
p(D) .

Philosophical issue:
Frequentists: parameter is NOT a random quantity, p(θ) should not exist.

Bayesian: p(θ|D) is our degree of belief in parameter values.
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Consequences of being a Bayesian

Uncertain quantities are modeled by probability.

Incremental learning: two data sets D1 and D2. Learning from the first

p(θ|D1) ∝ p(D1|θ)p(θ)

and later from the second:

p(θ|D1, D2) ∝ p(D2|θ)p(θ|D1).

Model selection: we have multiple possible models M1 . . . Mn and do not
know which is correct. Model is uncertain.

Unknown variable m ∈ {M1, . . . , Mn} and seek p(m).
Nuisance parameters: to define parameters θ we often need “regularization”

parameters, η (hyper-parameters). Hyper-parameters are
uncertain.
We seek p(θ, η|D), or marginal p(θ|D) =

∫
p(θ, η|D)dη
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Example: curve fitting

Linear regression:

y = Xθ + e,

p(y|X , θ) = N (Xθ, σI)

Estimating the parameter

p(θ|X , y) ∝ p(y|X , θ)p(θ)
= N (µθ, Σθ)

µθ = (X T X)−1X T y.

Σθ = (X T X)−1.

Isn’t it the same as before? What is the use
for Σθ?
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Prediction

Prediction with LS estimate:

ŷ = X θ̂ + e.

Known variance of e.
Why it does not extrapolate well?

Bayesian explanation
Prediction

ŷ ∼ p(y ′|θ̂),

assumes certainty in estimate of θ̂.
▶ All that is certain is the data!

ŷ ∼ p(y ′|y , X)

▶ Working out the rules:

p(y ′|y , X) =
∫

p(y ′|θ)p(θ|y , X)dθ
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ŷ ∼ p(y ′|θ̂),

assumes certainty in estimate of θ̂.

▶ All that is certain is the data!

ŷ ∼ p(y ′|y , X)

▶ Working out the rules:

p(y ′|y , X) =
∫

p(y ′|θ)p(θ|y , X)dθ

-5 0 5 10 15
x

-4

-2

0

2

4

6

8

10

12

14

16

y

Data

data
true f
predition
95% interval



Prediction

Prediction with LS estimate:
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Intuition behind marginalizaton

Definitely not exact math! θ ∈ {Θ1, Θ2}

p(y ′, θ|y , X) p(θ|y , X)

Θi
y ′

p(y ′|y , X) p(y ′|θ = Θ2)



Bayesian Prediction

▶ Bayesian prediction:

p(y ′|y , X) =
∫

p(y ′|θ)p(θ|y , X)dθ

▶ Posterior probability

p(θ|y , X) ∝ p(y |θ, X)p(θ)

for choices:

p(y |θ, X) = N (Xθ, 1),

log p(y |θ, X) = −1
2 (y − Xθ)⊤(y − Xθ) + c,

▶ Solution

p(θ|y , X) = N (θ̂, Sn),
θ̂ = (X ′X)−1X ′y , Sn = (X ′X)−1.

p(y ′|y , X) = N (X θ̂, 1 + [1, x ]Sn[1, x ]⊤)
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Challenge: curve fitting
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What is wrong with minimization?

1. The error of the fit is minimized
▶ over-fitting,

2. Model complexity is not taken into account
3. How the humans decide?

▶ Potentially many answers
▶ penalization / regularization terms,
▶ information criteria
▶ cross validation testing / training data,

▶ Bayesian answer:
▶ admit that the model order is unknown.
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Bayesian Model Selection

▶ Unknown quantity: model order r has distribution p(r |y , X)
▶ Known data: y, X with model p(y|θ, X , r) = N(Xθ, 1),

Looking for p(r |y, X):

1. Bayes rule
p(r |y, X) = p(y|X , r)p(r)∑

r p(y|X , r)p(r)
, p(r) =?

2. Marginalization

p(y|X , r) =
∫

p(y, θ|X , r)dθ

3. Chain rule

p(y, θ|X , r) = p(y|θ, X , r)p(θ|r), p(θ|r) = N(0, αI)
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Application of the polynomial
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How to choose α?

▶ assume α an unknown hyperparametr
▶ uncertainty => hierarchical prior p(α) = Γ(γ, δ).
▶ solve p(r |y , X) =

∫
p(r |y , x , α)p(α)dα

▶ works for γ = δ = 0 which is Jeffrey’s improper prior p(α) ∝ 1/α,
▶ Recursion ends! no need for next hierarchy.
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Bayesian prediction:
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Roadmap

Theory Shallow models Deep models
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OK, I trust you, lets use it for my fancy model!

Not so fast!

▶ Posterior density of linear
model is tractable only for
p(θ|σ), not for p(θ) = N (0, τ)!

▶ Non-linear models are out of
question.

Monte-Carlo for the rescue!
▶ probability density

approximated by empirical
densities

p(θ|y , X) ≈ 1
J

J∑
j=1

(θ − θ(j))

with trivial integration

p(y ′|y , X) = 1
J

J∑
j=1

p(y |X , θ(j))

p(m,s|x1=1,x2=2)  
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I am for it, sample it for me!

Sure. Meet probabilistic programming.

STAN: https://mc-stan.org/
▶ HMC, NUTS
▶ Variational inference
▶ Matlab, R, Mathematica,

Python, ...
Turing.jl:
https://github.com/TuringLang/Turing.jl

▶ HMC, NUTS, SMC, PG
▶ Julia

PyMC3:
▶ Python
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Even Neural networks?

Consider a classification problem of
2d input space.

y = fθ([x1, x2])
y ∈ {0, 1}

with MLP (2->3->2->1)

ŷ = σ(W3th(W2th(W1x + b1) + b2) + b3)
θ = [W1, b1, W2, b2, W3, b3]

with prediction error:

CE(ŷ , y) = − (y log ŷ + (1 − y) log(1 − ŷ))

training using gradient descent.

▶ prediction ŷ ∈ (0, 1) – is it a
probability?

▶ probability of observation

p(y |θ, x) = Be(fθ(x))
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Standard NN: Gradient descent

Training with GD
▶ today with ADAM

Contour of network output on scale
(0,1)
▶ can we trust it?

▶ what is wrong?
▶ Trust in one parametric

value, θ̂.
▶ insufficient data
▶ is it not probabilistic?
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Two different uncertainties

Uncertainty:

aleatoric – in the data – ML estimation handle well
epistemic – missing data – Bayes handles well
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Bayes in NN

Sample θ.
Use probabilistic programming:

NUTS sampler generates 5000 estimates (NN).
Prediction

y = 1
5000

∑
j

f (x , θ(j))

Took 20min to sample.



Roadmap:
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Deep learning: networks are huge

Proper sampling is too expensive!

Something fast and “close enough”:

1. Running the task many times from different initial conditions
▶ Deep Ensembles

2. Stochastic Gradient Descent
▶ Langevin Dynamics
▶ Stepsize Tuners

3. Dropout
▶ Dropout Monte Carlo



Stochastic Gradient Descent: faster training

Instead of optimizing loss for all data

θ̂ = arg min
θ

L(θ), L(θ) =
n∑

i=1

L(xi , yi , θ),

θ̂(τ+1) = θ̂(τ) − η∇L(θ̂(τ)),

we create a subsample of the indeces in each iteration!

I ⊂ {1, . . . , n}, |I| < n,

L̃τ =
∑
i∈Iτ

L(xi , yi , θ)

Stochastic GD:
θ̂(τ+1) = θ̂(τ) − η∇L̃(θ̂(τ)),

satisfies conditions
∇θL(y , x , θ) = E

(
∇L̃(y , x , θ)

)
and converges to the same solution for decreasing learning rate∑

τ
η = ∞,

∑
τ

η2 < ∞.



Stochastic Gradient Descent

Deterministic gradient:

Stochastic gradient: will converge only if ητ → 0.

For constant ητ it “walks” around optima. Does it sample in Bayesian sense?



SGD is Approximate Bayesian Inference

SDG is a discretization of approximation of random walk model

∇L̃(θ) ≈ ∇L(θ) + 1√
S

∆, ∆ ∼ N (0, C(θ))

If the loss function can be approximated by quadratic function

L(θ) = 1
2θ⊤Aθ,

then posterior factor q(θ) = N (θ̂, Σ) satisfies:

ΣA + AΣ = η

S C(θ).

Minimizing KL to p(θ) yields (Mandt, Hoffman, Blei, 2017):

η∗ = 2S
N

dim(θ)
tr(C) , or H∗ = 2S

N C−1, (matrix learning rate)

Can be used to tune learning rate using

Cτ = (1 − κτ )Cτ−1 + κτ cov(∇L̃).



Dropout Monte Carlo

Standard Network Model:

zi = σi (Wi x + bi ) , i = 1 : m − 1,

y = σ2 (wmzm + bm) ,

Dropout Network Model:

zi = σi (Wi (ξi ◦ x) + b1) ,

y = σ2 (wm(ξm ◦ zm) + bm)

where ξi are vectors of zeros and ones sampled from Bernouli distribution.

▶ samples are drawn in each step of GD!
▶ Works also for other distributions of ξ
▶ Dropout is an approximate Bayesian sampler (Gal, Ghahramani, 2016),

▶ dropout is switched on in prediction mode!!
▶ prediction is repeated N times and averaged



Dropout Monte Carlo

Deterministic:

model = Chain(Dense(2, 3, tanh), Dense(3, 2, tanh), Dense(2, 1, σv))

Dropout:

model = Chain(Dense(2, 10, tanh), Dropout(0.4), Dense(10, 2, tanh),
Dropout(0.4), Dense(2, 1, σv))

Max. Likelihood Dropout(100) HMC

▶ Our default model for uncertainty modelling in NLP.



Take home message

▶ Inference of “best” parameters of your model is reliable only
assymptotically
▶ you need a LOT of data

▶ For insufficient data you face the epistemic uncertainty
▶ you do not know what you do not know
▶ Bayesian approach can handle that at additional cost

▶ Commodity solutions:
▶ Probabilistic programming:

▶ Turing.jl, PyMC3, STAN
▶ For shallow Models

▶ Sampling inside training of NN
▶ Dropout MC
▶ for deep models

▶ Nice theory
▶ stochastic processes
▶ kernel methods


