Bayesian Machine Learning for Shallow and Deep Models

Václav Šmídl,
${ }^{1}$ AI Center, FEL, CTU, Prague,
${ }^{2}$ RICE, FEL, UWB, Pilsen,

February 24, 2023

Real problem to be solved! Example in curve fitting

Fit by a linear function:

$$
\begin{array}{lll}
y_{1}=a x_{1} & +b 1, & +e_{1} \\
y_{2}=a x_{2} & +b 1 & +e_{2}
\end{array}
$$

In matrix notation $\theta=[a, b]^{T}$:

$$
\begin{aligned}
& y=X \theta+\mathbf{e} \\
& \mathbf{e}=\mathbf{y}-X \theta
\end{aligned}
$$

Minimize $\sum_{i} e_{i}^{2}=\mathbf{e}^{T} \mathbf{e}$:

Real problem to be solved! Example in curve fitting

In matrix notation $\theta=[a, b]^{T}$:

$$
\begin{aligned}
& \mathbf{y}=X \theta+\mathbf{e} \\
& \mathbf{e}=\mathbf{y}-X \theta
\end{aligned}
$$

Minimize $\sum_{i} e_{i}^{2}=\mathbf{e}^{T} \mathbf{e}$:

$$
\begin{aligned}
& \hat{\theta}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} . \quad \hat{\sigma}^{2}=\frac{1}{n} \mathbf{e}^{T} \mathbf{e} \\
& \hat{y}=X \hat{\theta}+\hat{\sigma} \mathbf{e}
\end{aligned}
$$

Real problem to be solved! Example in curve fitting

In matrix notation $\theta=[a, b]^{T}$:

$$
\begin{aligned}
& \mathbf{y}=X \theta+\mathbf{e}, \\
& \mathbf{e}=\mathbf{y}-X \theta
\end{aligned}
$$

Minimize $\sum_{i} e_{i}^{2}=\mathbf{e}^{T} \mathbf{e}$:

$$
\begin{aligned}
& \hat{\theta}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} . \quad \hat{\sigma}^{2}=\frac{1}{n} \mathbf{e}^{T} \mathbf{e} \\
& \hat{y}=X \hat{\theta}+\hat{\sigma} \mathbf{e}
\end{aligned}
$$

Real problem to be solved! Example in curve fitting

In matrix notation $\theta=[a, b]^{T}$:

$$
\begin{aligned}
& \mathbf{y}=X \theta+\mathbf{e} \\
& \mathbf{e}=\mathbf{y}-X \theta
\end{aligned}
$$

Minimize $\sum_{i} e_{i}^{2}=\mathbf{e}^{T} \mathbf{e}$:

$$
\begin{aligned}
& \hat{\theta}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} . \quad \hat{\sigma}^{2}=\frac{1}{n} \mathbf{e}^{T} \mathbf{e} \\
& \hat{y}=X \hat{\theta}+\hat{\sigma} \mathbf{e}
\end{aligned}
$$

Overconfidence! The answer is correct only asymptotically $\left(\mathcal{O}\left(n^{-1}\right)\right)$

- we never have infinite dataset or large enough
- we need to handle the information with care!

Roadmap:

Theory

Shallow models

Deep models

Bayesian (Laplace) philosophy

Bayesian =

Bayesian (Laplace) philosophy

Bayesian $=$ someone who uses probability calculus to quantify uncertainty.

Bayesian (Laplace) philosophy

Bayesian $=$ someone who uses probability calculus to quantify uncertainty.

Justification: Uncertainty and randomness have the same effect on decision-making.

Bayesian (Laplace) philosophy

Bayesian $=$ someone who uses probability calculus to quantify uncertainty.

Justification: Uncertainty and randomness have the same effect on decision-making.

Distance of a star: measuring distance to stars has large observation error, say we measure 10ly ± 1 ly

Bayesian (Laplace) philosophy

Bayesian $=$ someone who uses probability calculus to quantify uncertainty.

Justification: Uncertainty and randomness have the same effect on decision-making.

Distance of a star: measuring distance to stars has large observation error, say we measure 10ly ± 1 ly
Can I say that the distance of the star has Normal distribution:
$\mathcal{N}(10,1)$?

- No: the distance is not random
- Yes: you are a Bayesian seeing distance as a degree of belief,

Probability of an event

Probability=Frequency of an event:

$$
P(x)=\frac{\# \text { realizations }}{\# \text { trials }}
$$

Probability of an event

Probability=Frequency of an event:

$$
P(x)=\frac{\# \text { realizations }}{\# \text { trials }}
$$

$$
P(x=1)=\frac{1}{6}
$$

Probability of an event

Probability=Frequency of an event:

$$
P(x)=\frac{\# \text { realizations }}{\# \text { trials }}
$$

$$
P(x=1)=\frac{1}{6}
$$

Probability of an event

Probability=Frequency of an event:

$$
P(x)=\frac{\# \text { realizations }}{\# \text { trials }}
$$

$$
P(x=1)=\frac{1}{6}
$$

Probability of an event

Frequentist:

Probability=Frequency of an event:

$$
P(x)=\frac{\# \text { realizations }}{\# \text { trials }}
$$

$$
P(x=1)=\frac{1}{6}
$$

Bayesian:

Frequency:
$P($ Sparta beats Slavia $)=\frac{133}{294} \approx 45 \%$

Probability of an event

Frequentist:

Probability=Frequency of an event:

$$
P(x)=\frac{\# \text { realizations }}{\# \text { trials }}
$$

Bayesian:

Frequency:
$P($ Sparta beats Slavia $)=\frac{133}{294} \approx 45 \%$
Degree (state) of belief:

$$
P(x \mid d)=\frac{P(d \mid x) P(x)}{\sum_{x} P(d \mid x) P(x)}
$$

$P($ Sparta vs. Slavia $=1)=1 / 1.8$

Probability of an event

Frequentist:

Probability=Frequency of an event:

$$
P(x)=\frac{\# \text { realizations }}{\# \text { trials }}
$$

Bayesian:

Frequency:
$P($ Sparta beats Slavia $)=\frac{133}{294} \approx 45 \%$
Degree (state) of belief:

$$
P(x \mid d)=\frac{P(d \mid x) P(x)}{\sum_{x} P(d \mid x) P(x)}
$$

$P($ Sparta vs. Slavia $=1)=1 / 1.8$

Same probability calculus
Different ${ }^{1}$ role of prior $P(x)$, applications and methods

1. Product rule (Chain rule)

$$
P(X, Y)=P(X \mid Y) P(Y)
$$

2. Sum rule (Marginalization)

$$
P(X)=\sum_{Y} P(X, Y)
$$

All you need is rules: Rules of probability

1. Product rule (Chain rule)

$$
\begin{aligned}
P(X, Y) & =P(X \mid Y) P(Y), \\
& =P(X) P(Y \mid X)
\end{aligned}
$$

Derived

Continuous distributions: $p(x)=d F(x)$
2. Sum rule (Marginalization)

$$
\begin{aligned}
& P(X)=\sum_{Y} P(X, Y) \\
& P(Y)=\sum_{X} P(X, Y)
\end{aligned}
$$

$$
P(X)=\sum_{Y} P(X \mid Y) P(Y)
$$

(engineering notation)
2. Sum for Continuous distribution

$$
p(x)=\int p(x, y) d y
$$

Bayes Rule

From chain rule:

$$
\begin{aligned}
P(X \mid Y) P(Y) & =P(Y \mid X) P(X) . \\
P(X \mid Y) & =\frac{P(Y \mid X) P(X) .}{P(Y)}
\end{aligned}
$$

Bayes Rule

From chain rule:

$$
\begin{aligned}
P(X \mid Y) P(Y) & =P(Y \mid X) P(X) \\
P(X \mid Y) & =\frac{P(Y \mid X) P(X) .}{P(Y)}
\end{aligned}
$$

Application: θ is a parameter, D is a random observation

$$
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{p(D)} .
$$

Bayes Rule

From chain rule:

$$
\begin{aligned}
P(X \mid Y) P(Y) & =P(Y \mid X) P(X) \\
P(X \mid Y) & =\frac{P(Y \mid X) P(X)}{P(Y)}
\end{aligned}
$$

Application: θ is a parameter, D is a random observation

$$
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{p(D)}
$$

Philosophical issue:
Frequentists: parameter is NOT a random quantity, $p(\theta)$ should not exist. Bayesian: $p(\theta \mid D)$ is our degree of belief in parameter values.

Consequences of being a Bayesian

Uncertain quantities are modeled by probability.
Incremental learning: two data sets \mathcal{D}_{1} and \mathcal{D}_{2}. Learning from the first

$$
p\left(\theta \mid \mathcal{D}_{1}\right) \propto p\left(\mathcal{D}_{1} \mid \theta\right) p(\theta)
$$

and later from the second:

$$
p\left(\theta \mid \mathcal{D}_{1}, \mathcal{D}_{2}\right) \propto p\left(\mathcal{D}_{2} \mid \theta\right) p\left(\theta \mid \mathcal{D}_{1}\right)
$$

Model selection: we have multiple possible models $\mathcal{M}_{1} \ldots \mathcal{M}_{n}$ and do not know which is correct. Model is uncertain.

Consequences of being a Bayesian

Uncertain quantities are modeled by probability.
Incremental learning: two data sets \mathcal{D}_{1} and \mathcal{D}_{2}. Learning from the first

$$
p\left(\theta \mid \mathcal{D}_{1}\right) \propto p\left(\mathcal{D}_{1} \mid \theta\right) p(\theta)
$$

and later from the second:

$$
p\left(\theta \mid \mathcal{D}_{1}, \mathcal{D}_{2}\right) \propto p\left(\mathcal{D}_{2} \mid \theta\right) p\left(\theta \mid \mathcal{D}_{1}\right)
$$

Model selection: we have multiple possible models $\mathcal{M}_{1} \ldots \mathcal{M}_{n}$ and do not know which is correct. Model is uncertain. Unknown variable $m \in\left\{\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}\right\}$ and seek $p(m)$.

Consequences of being a Bayesian

Uncertain quantities are modeled by probability.
Incremental learning: two data sets \mathcal{D}_{1} and \mathcal{D}_{2}. Learning from the first

$$
p\left(\theta \mid \mathcal{D}_{1}\right) \propto p\left(\mathcal{D}_{1} \mid \theta\right) p(\theta)
$$

and later from the second:

$$
p\left(\theta \mid \mathcal{D}_{1}, \mathcal{D}_{2}\right) \propto p\left(\mathcal{D}_{2} \mid \theta\right) p\left(\theta \mid \mathcal{D}_{1}\right)
$$

Model selection: we have multiple possible models $\mathcal{M}_{1} \ldots \mathcal{M}_{n}$ and do not know which is correct. Model is uncertain. Unknown variable $m \in\left\{\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}\right\}$ and seek $p(m)$.
Nuisance parameters: to define parameters θ we often need "regularization" parameters, η (hyper-parameters). Hyper-parameters are uncertain.

Consequences of being a Bayesian

Uncertain quantities are modeled by probability.
Incremental learning: two data sets \mathcal{D}_{1} and \mathcal{D}_{2}. Learning from the first

$$
p\left(\theta \mid \mathcal{D}_{1}\right) \propto p\left(\mathcal{D}_{1} \mid \theta\right) p(\theta)
$$

and later from the second:

$$
p\left(\theta \mid \mathcal{D}_{1}, \mathcal{D}_{2}\right) \propto p\left(\mathcal{D}_{2} \mid \theta\right) p\left(\theta \mid \mathcal{D}_{1}\right)
$$

Model selection: we have multiple possible models $\mathcal{M}_{1} \ldots \mathcal{M}_{n}$ and do not know which is correct. Model is uncertain. Unknown variable $m \in\left\{\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}\right\}$ and seek $p(m)$.
Nuisance parameters: to define parameters θ we often need "regularization" parameters, η (hyper-parameters). Hyper-parameters are uncertain.
We seek $p(\theta, \eta \mid \mathcal{D})$, or marginal $p(\theta \mid \mathcal{D})=\int p(\theta, \eta \mid \mathcal{D}) d \eta$

Example: curve fitting

Linear regression:

$$
\begin{aligned}
y & =X \theta+\mathbf{e} \\
p(\mathbf{y} \mid X, \theta) & =\mathcal{N}(X \theta, \sigma I)
\end{aligned}
$$

Estimating the parameter

Example: curve fitting

Linear regression:

$$
\begin{aligned}
y & =X \theta+\mathbf{e} \\
p(\mathbf{y} \mid X, \theta) & =\mathcal{N}(X \theta, \sigma I)
\end{aligned}
$$

Estimating the parameter

$$
\begin{aligned}
p(\theta \mid X, \mathbf{y}) & \propto p(\mathbf{y} \mid X, \theta) p(\theta) \\
& =\mathcal{N}\left(\mu_{\theta}, \Sigma_{\theta}\right) \\
\mu_{\theta} & =\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} . \\
\Sigma_{\theta} & =\left(X^{T} X\right)^{-1} .
\end{aligned}
$$

Example: curve fitting

Linear regression:

$$
\begin{aligned}
y & =X \theta+\mathbf{e} \\
p(\mathbf{y} \mid X, \theta) & =\mathcal{N}(X \theta, \sigma I)
\end{aligned}
$$

Estimating the parameter

$$
\begin{aligned}
p(\theta \mid X, \mathbf{y}) & \propto p(\mathbf{y} \mid X, \theta) p(\theta) \\
& =\mathcal{N}\left(\mu_{\theta}, \Sigma_{\theta}\right) \\
\mu_{\theta} & =\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} . \\
\Sigma_{\theta} & =\left(X^{T} X\right)^{-1} .
\end{aligned}
$$

Isn't it the same as before? What is the use for Σ_{θ} ?

Prediction

Prediction with LS estimate:

$$
\hat{y}=X \hat{\theta}+e
$$

Known variance of e.
Why it does not extrapolate well?

Prediction

Prediction with LS estimate:

$$
\hat{y}=X \hat{\theta}+e
$$

Known variance of e.
Why it does not extrapolate well?

Bayesian explanation

Prediction

$$
\hat{y} \sim p\left(y^{\prime} \mid \hat{\theta}\right),
$$

assumes certainty in estimate of $\hat{\theta}$.

Prediction

Prediction with LS estimate:

$$
\hat{y}=X \hat{\theta}+e
$$

Known variance of e.
Why it does not extrapolate well?

Bayesian explanation

Prediction

$$
\hat{y} \sim p\left(y^{\prime} \mid \hat{\theta}\right)
$$

assumes certainty in estimate of $\hat{\theta}$.

- All that is certain is the data!

$$
\hat{y} \sim p\left(y^{\prime} \mid y, X\right)
$$

- Working out the rules:

$$
p\left(y^{\prime} \mid y, X\right)=\int p\left(y^{\prime} \mid \theta\right) p(\theta \mid y, X) d \theta
$$

Intuition behind marginalizaton

Definitely not exact math! $\theta \in\left\{\Theta_{1}, \Theta_{2}\right\}$

$$
p\left(y^{\prime} \mid \theta=\Theta_{2}\right)
$$

Bayesian Prediction

- Bayesian prediction:

$$
p\left(y^{\prime} \mid y, X\right)=\int p\left(y^{\prime} \mid \theta\right) p(\theta \mid y, X) d \theta
$$

- Posterior probability

$$
p(\theta \mid y, X) \propto p(y \mid \theta, X) p(\theta)
$$

for choices:

$$
p(y \mid \theta, X)=\mathcal{N}(X \theta, 1)
$$

$\log p(y \mid \theta, X)=-\frac{1}{2}(y-X \theta)^{\top}(y-X \theta)+c$,

Bayesian Prediction

- Bayesian prediction:

$$
p\left(y^{\prime} \mid y, X\right)=\int p\left(y^{\prime} \mid \theta\right) p(\theta \mid y, X) d \theta
$$

- Posterior probability

$$
p(\theta \mid y, X) \propto p(y \mid \theta, X) p(\theta)
$$

for choices:

$$
\begin{aligned}
p(y \mid \theta, X) & =\mathcal{N}(X \theta, 1) \\
\log p(y \mid \theta, X) & =-\frac{1}{2}(y-X \theta)^{\top}(y-X \theta)+c
\end{aligned}
$$

- Solution

$$
\begin{aligned}
p(\theta \mid y, X) & =\mathcal{N}\left(\hat{\theta}, S_{n}\right) \\
\hat{\theta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y, \quad S_{n}=\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

Bayesian Prediction

- Bayesian prediction:

$$
p\left(y^{\prime} \mid y, X\right)=\int p\left(y^{\prime} \mid \theta\right) p(\theta \mid y, X) d \theta
$$

- Posterior probability

$$
p(\theta \mid y, X) \propto p(y \mid \theta, X) p(\theta)
$$

for choices:

$$
p(y \mid \theta, X)=\mathcal{N}(X \theta, 1)
$$

$\log p(y \mid \theta, X)=-\frac{1}{2}(y-X \theta)^{\top}(y-X \theta)+c$,

- Solution

$$
\begin{aligned}
p(\theta \mid y, X) & =\mathcal{N}\left(\hat{\theta}, S_{n}\right) \\
\hat{\theta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y, \quad S_{n}=\left(X^{\prime} X\right)^{-1} \\
p\left(y^{\prime} \mid y, X\right) & =\mathcal{N}\left(X \hat{\theta}, 1+[1, x] S_{n}[1, x]^{\top}\right)
\end{aligned}
$$

Challenge: curve fitting

Challenge: curve fitting

What is wrong with minimization?

1. The error of the fit is minimized

- over-fitting,

2. Model complexity is not taken into account
3. How the humans decide?

What is wrong with minimization?

1. The error of the fit is minimized

- over-fitting,

2. Model complexity is not taken into account
3. How the humans decide?

- Potentially many answers
- penalization / regularization terms,
- information criteria
- cross validation testing / training data,

What is wrong with minimization?

1. The error of the fit is minimized

- over-fitting,

2. Model complexity is not taken into account
3. How the humans decide?

- Potentially many answers
- penalization / regularization terms,
- information criteria
- cross validation testing / training data,
- Bayesian answer:
- admit that the model order is unknown.

Bayesian Model Selection

- Unknown quantity: model order r has distribution $p(r \mid y, X)$
- Known data: \mathbf{y}, X with model $p(\mathbf{y} \mid \theta, X, r)=N(X \theta, 1)$,

Looking for $p(r \mid \mathbf{y}, X)$:

1. Bayes rule

$$
p(r \mid \mathbf{y}, X)=\frac{p(\mathbf{y} \mid X, r) p(r)}{\sum_{r} p(\mathbf{y} \mid X, r) p(r)}, \quad p(r)=?
$$

Bayesian Model Selection

- Unknown quantity: model order r has distribution $p(r \mid y, X)$
- Known data: \mathbf{y}, X with model $p(\mathbf{y} \mid \theta, X, r)=N(X \theta, 1)$,

Looking for $p(r \mid \mathbf{y}, X)$:

1. Bayes rule

$$
p(r \mid \mathbf{y}, X)=\frac{p(\mathbf{y} \mid X, r) p(r)}{\sum_{r} p(\mathbf{y} \mid X, r) p(r)}, \quad p(r)=?
$$

2. Marginalization

$$
p(\mathbf{y} \mid X, r)=\int p(\mathbf{y}, \theta \mid X, r) d \theta
$$

Bayesian Model Selection

- Unknown quantity: model order r has distribution $p(r \mid y, X)$
- Known data: \mathbf{y}, X with model $p(\mathbf{y} \mid \theta, X, r)=N(X \theta, 1)$,

Looking for $p(r \mid \mathbf{y}, X)$:

1. Bayes rule

$$
p(r \mid \mathbf{y}, X)=\frac{p(\mathbf{y} \mid X, r) p(r)}{\sum_{r} p(\mathbf{y} \mid X, r) p(r)}, \quad p(r)=?
$$

2. Marginalization

$$
p(\mathbf{y} \mid X, r)=\int p(\mathbf{y}, \theta \mid X, r) d \theta
$$

3. Chain rule

$$
p(\mathbf{y}, \theta \mid X, r)=p(\mathbf{y} \mid \theta, X, r) p(\theta \mid r), \quad p(\theta \mid r)=?
$$

Bayesian Model Selection

- Unknown quantity: model order r has distribution $p(r \mid y, X)$
- Known data: \mathbf{y}, X with model $p(\mathbf{y} \mid \theta, X, r)=N(X \theta, 1)$,

Looking for $p(r \mid \mathbf{y}, X)$:

1. Bayes rule

$$
p(r \mid \mathbf{y}, X)=\frac{p(\mathbf{y} \mid X, r) p(r)}{\sum_{r} p(\mathbf{y} \mid X, r) p(r)}, \quad p(r)=1 / r_{\max }
$$

2. Marginalization

$$
p(\mathbf{y} \mid X, r)=\int p(\mathbf{y}, \theta \mid X, r) d \theta
$$

3. Chain rule

$$
p(\mathbf{y}, \theta \mid X, r)=p(\mathbf{y} \mid \theta, X, r) p(\theta \mid r), \quad p(\theta \mid r)=N(0, \alpha I)
$$

Solution:

$$
p(r \mid \mathbf{y}, X, \alpha) \propto\left|X^{T} X+\alpha I\right|^{-1 / 2} \exp \left(-\frac{1}{2} \hat{\theta}\left(X^{T} X+\alpha I\right) \hat{\theta}\right)
$$

Application of the polynomial

α	$1 \mathrm{e}-8$	$1 \mathrm{e}-6$	$1 \mathrm{e}-4$	"best"
$P(x=2)$	44%	8%	1%	44%
$P(x=3)$	55%	92%	99%	55%
$P(x=4)$	0%	0%	0%	0%

How to choose α ?

Application of the polynomial

α	$1 \mathrm{e}-8$	$1 \mathrm{e}-6$	$1 \mathrm{e}-4$	"best"
$P(x=2)$	44%	8%	1%	44%
$P(x=3)$	55%	92%	99%	55%
$P(x=4)$	0%	0%	0%	0%

How to choose α ?

- assume α an unknown hyperparametr
- uncertainty $=>$ hierarchical prior $p(\alpha)=\Gamma(\gamma, \delta)$.
- solve $p(r \mid y, X)=\int p(r \mid y, x, \alpha) p(\alpha) d \alpha$

Application of the polynomial

α	$1 \mathrm{e}-8$	$1 \mathrm{e}-6$	$1 \mathrm{e}-4$	"best"
$P(x=2)$	44%	8%	1%	44%
$P(x=3)$	55%	92%	99%	55%
$P(x=4)$	0%	0%	0%	0%

How to choose α ?

- assume α an unknown hyperparametr
- uncertainty $=>$ hierarchical prior $p(\alpha)=\Gamma(\gamma, \delta)$.
- solve $p(r \mid y, X)=\int p(r \mid y, x, \alpha) p(\alpha) d \alpha$
- works for $\gamma=\delta=0$ which is Jeffrey's improper prior $p(\alpha) \propto 1 / \alpha$,
- Recursion ends! no need for next hierarchy.

Bayesian prediction:

Bayesian prediction:

Roadmap

Theory

Shallow models

Deep models

OK, I trust you, lets use it for my fancy model!

Not so fast!

OK, I trust you, lets use it for my fancy model!

Not so fast!

- Posterior density of linear model is tractable only for $p(\theta \mid \sigma)$, not for $p(\theta)=\mathcal{N}(0, \tau)$!
- Non-linear models are out of question.

OK, I trust you, lets use it for my fancy model!

Not so fast!

- Posterior density of linear model is tractable only for $p(\theta \mid \sigma)$, not for $p(\theta)=\mathcal{N}(0, \tau)$!
- Non-linear models are out of question.
Monte-Carlo for the rescue!

with trivial integration

$$
p\left(y^{\prime} \mid y, X\right)=\frac{1}{J} \sum_{j=1}^{J} p\left(y \mid X, \theta^{(j)}\right)
$$

I am for it, sample it for me!

Sure. Meet probabilistic programming.

I am for it, sample it for me!

Sure. Meet probabilistic programming.
STAN: https://mc-stan.org/

- HMC, NUTS
- Variational inference
- Matlab, R, Mathematica, Python, ...

Turing.jl:

https://github.com/TuringLang/Turing.j

- HMC, NUTS, SMC, PG
- Julia

PyMC3:

- Python

```
```

addpath('Mat labStan'

```
```

addpath('Mat labStan'
linmodel =
linmodel =
'model {'
'model {'
y ~ normal(alpha\star(1 - exp(-beta * x))+gamma, sigma);
y ~ normal(alpha\star(1 - exp(-beta * x))+gamma, sigma);
'}'
'}'
'paraneters {'
'paraneters {'
real<lower=0> alpha;'
real<lower=0> alpha;'
real<lower=0> beta;'
real<lower=0> beta;'
real gamma;
real gamma;
real<lower=0,upper=0.1> sigma;'
real<lower=0,upper=0.1> sigma;'
'}'
'}'
'data
'data
int<lower=0>N;'
int<lower=0>N;'
vector[N] x;'
vector[N] x;'
vector[N] y;'
vector[N] y;'
};';
};';
@model gdemo(x) = begin
@model gdemo(x) = begin
s ~ InverseGamma(}2,3
s ~ InverseGamma(}2,3
m ~ Normal(0, sqrt(s))
m ~ Normal(0, sqrt(s))
x[1] ~ Normal(m, sqrt(s))
x[1] ~ Normal(m, sqrt(s))
x[2] ~ Normal(m, sqrt(s))
x[2] ~ Normal(m, sqrt(s))
return s,m
return s,m
end
end
chain = sample(gdemo([1.5, 2.0]), SGLD(10000, 0.5))

```
```

 chain = sample(gdemo([1.5, 2.0]), SGLD(10000, 0.5))
    ```
```


Even Neural networks?

Consider a classification problem of 2d input space.

$$
\begin{aligned}
& y=f_{\theta}\left(\left[x_{1}, x_{2}\right]\right) \\
& y \in\{0,1\}
\end{aligned}
$$

with MLP $(2->3->2->1)$

$$
\begin{aligned}
\hat{y} & =\sigma\left(W_{3} \operatorname{th}\left(W_{2} \operatorname{th}\left(W_{1} x+b_{1}\right)+b_{2}\right)+b_{3}\right) \\
\theta & =\left[W_{1}, b_{1}, W_{2}, b_{2}, W_{3}, b_{3}\right]
\end{aligned}
$$

with prediction error:

$$
C E(\hat{y}, y)=-(y \log \hat{y}+(1-y) \log (1-\hat{y}))
$$

training using gradient descent.

Even Neural networks?

Consider a classification problem of 2d input space.

$$
\begin{aligned}
& y=f_{\theta}\left(\left[x_{1}, x_{2}\right]\right) \\
& y \in\{0,1\}
\end{aligned}
$$

with MLP $(2->3->2->1)$

$$
\begin{aligned}
\hat{y} & =\sigma\left(W_{3} \operatorname{th}\left(W_{2} \operatorname{th}\left(W_{1} x+b_{1}\right)+b_{2}\right)+b_{3}\right) \\
\theta & =\left[W_{1}, b_{1}, W_{2}, b_{2}, W_{3}, b_{3}\right]
\end{aligned}
$$

with prediction error:

$$
C E(\hat{y}, y)=-(y \log \hat{y}+(1-y) \log (1-\hat{y}))
$$

training using gradient descent.

- prediction $\hat{y} \in(0,1)$ - is it a probability?
- probability of observation

$$
p(y \mid \theta, x)=\mathcal{B e}\left(f_{\theta}(x)\right)
$$

Standard NN: Gradient descent

Training with GD

- today with ADAM

Contour of network output on scale $(0,1)$

- can we trust it?

Standard NN: Gradient descent

Training with GD

- today with ADAM

Contour of network output on scale $(0,1)$

- can we trust it?
- what is wrong?
- Trust in one parametric value, $\hat{\theta}$.
- insufficient data
- is it not probabilistic?

Two different uncertainties

Uncertainty:

$$
\begin{aligned}
& \text { aleatoric - in the data - ML estimation handle well } \\
& \text { epistemic - missing data - Bayes handles well }
\end{aligned}
$$

Bayes in NN

Sample θ.

Use probabilistic programming:
@model function bayes_nn(xs, ts, nparameters, reconstruct; alpha=0.09)
\# Create the weight and bias vector.
parameters ~MvNormal(Zeros(nparameters), I / alpha)
\# Construct NN from parameters
$n n=$ reconstruct (parameters)
\# Forward NN to make predictions
preds $=\mathrm{nn}(\mathrm{xs})$
\# Observe each prediction.

for i in 1:length(ts)
ts[i] ~ Bernoulli(preds[i])
end
end;

NUTS sampler generates 5000 estimates (NN).
Prediction

$$
y=\frac{1}{5000} \sum_{j} f\left(x, \theta^{(j)}\right)
$$

Took 20min to sample.

Roadmap:

Theory

Shallow models
Deep models

Deep learning: networks are huge

Proper sampling is too expensive!
Something fast and "close enough":

1. Running the task many times from different initial conditions

- Deep Ensembles

2. Stochastic Gradient Descent

- Langevin Dynamics
- Stepsize Tuners

3. Dropout

- Dropout Monte Carlo

Stochastic Gradient Descent: faster training

Instead of optimizing loss for all data

$$
\begin{aligned}
\hat{\theta} & =\arg \min _{\theta} \mathcal{L}(\theta), \quad \mathcal{L}(\theta)=\sum_{i=1}^{n} \mathcal{L}\left(x_{i}, y_{i}, \theta\right) \\
\hat{\theta}^{(\tau+1)} & =\hat{\theta}^{(\tau)}-\eta \nabla \mathcal{L}\left(\hat{\theta}^{(\tau)}\right)
\end{aligned}
$$

we create a subsample of the indeces in each iteration!

$$
\begin{aligned}
\mathcal{I} & \subset\{1, \ldots, n\},|\mathcal{I}|<n \\
\tilde{\mathcal{L}}_{\tau} & =\sum_{i \in \mathcal{I}^{\tau}} \mathcal{L}\left(x_{i}, y_{i}, \theta\right)
\end{aligned}
$$

Stochastic GD:

$$
\hat{\theta}^{(\tau+1)}=\hat{\theta}^{(\tau)}-\eta \nabla \tilde{L}\left(\hat{\theta}^{(\tau)}\right)
$$

satisfies conditions

$$
\nabla_{\theta} \mathcal{L}(y, x, \theta)=\mathrm{E}(\nabla \tilde{\mathcal{L}}(y, x, \theta))
$$

and converges to the same solution for decreasing learning rate $\sum_{\tau} \eta=\infty, \sum_{\tau} \eta^{2}<\infty$.

Stochastic Gradient Descent

Deterministic gradient:

Stochastic gradient: will converge only if $\eta_{\tau} \rightarrow 0$.
For constant η_{τ} it "walks" around optima. Does it sample in Bayesian sense?

SGD is Approximate Bayesian Inference

SDG is a discretization of approximation of random walk model

$$
\nabla \tilde{\mathcal{L}}(\theta) \approx \nabla \mathcal{L}(\theta)+\frac{1}{\sqrt{S}} \Delta, \quad \Delta \sim \mathcal{N}(0, C(\theta))
$$

If the loss function can be approximated by quadratic function

$$
\mathcal{L}(\theta)=\frac{1}{2} \theta^{\top} A \theta
$$

then posterior factor $q(\theta)=\mathcal{N}(\hat{\theta}, \Sigma)$ satisfies:

$$
\Sigma A+A \Sigma=\frac{\eta}{S} C(\theta)
$$

Minimizing KL to $p(\theta)$ yields (Mandt, Hoffman, Blei, 2017):

$$
\eta^{*}=\frac{2 S}{N} \frac{\operatorname{dim}(\theta)}{\operatorname{tr}(C)}, \text { or } \quad H^{*}=\frac{2 S}{N} C^{-1}, \text { (matrix learning rate) }
$$

Can be used to tune learning rate using

$$
C_{\tau}=\left(1-\kappa_{\tau}\right) C_{\tau-1}+\kappa_{\tau} \operatorname{cov}(\nabla \tilde{\mathcal{L}})
$$

Dropout Monte Carlo

Standard Network Model:

$$
\begin{aligned}
z_{i} & =\sigma_{i}\left(W_{i} x+b_{i}\right), \quad i=1: m-1 \\
y & =\sigma_{2}\left(w_{m} z_{m}+b_{m}\right)
\end{aligned}
$$

Dropout Network Model:

$$
\begin{aligned}
z_{i} & =\sigma_{i}\left(W_{i}\left(\xi_{i} \circ x\right)+b_{1}\right) \\
y & =\sigma_{2}\left(w_{m}\left(\xi_{m} \circ z_{m}\right)+b_{m}\right)
\end{aligned}
$$

where ξ_{i} are vectors of zeros and ones sampled from Bernouli distribution.

- samples are drawn in each step of GD!
- Works also for other distributions of ξ
- Dropout is an approximate Bayesian sampler (Gal, Ghahramani, 2016),
- dropout is switched on in prediction mode!!
- prediction is repeated N times and averaged

Dropout Monte Carlo

Deterministic:

$$
\text { model }=\text { Chain(Dense(2, 3, tanh }), \text { Dense }(3,2, \text { tanh }), \text { Dense }(2,1, \sigma))
$$

Dropout:

$$
\begin{gathered}
\text { model }=\text { Chain }(\operatorname{Dense}(2,10, \text { tanh }), \operatorname{Dropout}(0.4), \operatorname{Dense}(10,2, \text { tanh }), \\
\operatorname{Dropout}(0.4), \operatorname{Dense}(2,1, \sigma))
\end{gathered}
$$

Max. Likelihood

Dropout(100)

HMC

- Our default model for uncertainty modelling in NLP.

Take home message

- Inference of "best" parameters of your model is reliable only assymptotically
- you need a LOT of data
- For insufficient data you face the epistemic uncertainty
- you do not know what you do not know
- Bayesian approach can handle that at additional cost
- Commodity solutions:
- Probabilistic programming:
- Turing.jl, PyMC3, STAN
- For shallow Models
- Sampling inside training of NN
- Dropout MC
- for deep models
- Nice theory
- stochastic processes
- kernel methods

