Probability density learning for heterogeneous tree structured data

Václav Šmídl ${ }^{1}$, Tomáš Pevný ${ }^{1}$, Milan Papež ${ }^{1}$, et. al.

${ }^{1}$ AI Center, FEL, CTU, Prague,
${ }^{2}$ RICE, FEL, UWB, Pilsen,

February 10, 2023

Motivation: tree structured data

Classical machine learning methods:
Consider data in the form of d-dimensional vectors $x \in \mathbb{R}^{d}$.

Classifiers:

- Random Forest
- SVM
- Neural networks...

Classify Iris flowers:

Motivation: tree structured data

Classical machine learning methods:
Consider data in the form of d-dimensional vectors $x \in \mathbb{R}^{d}$.

Classifiers:

- Random Forest
- SVM
- Neural networks...

Classify Iris flowers:

Feature engineering 4d vector:

1. Sepal length
2. Sepal width
3. Petal length
4. Petal width

Motivation: tree structured data

Classical machine learning methods:
Consider data in the form of d-dimensional vectors $x \in \mathbb{R}^{d}$.

Classifiers:

- Random Forest
- SVM
- Neural networks...

Natural parametrization:

Classify Iris flowers:

Iris Versicolor

Iris Setosa

Feature engineering 4d vector:

1. Sepal length
2. Sepal width
3. Petal length
4. Petal width

- Which leaf to choose?
- Or average them?
- Does their count matter?

Tree-structured data: examples

Hierarchical tree structured data $=$ special case of graph data composed of three types of nodes:

1. Leafs: Scalar/Vector/Tensor
2. Dicts: key-value pairs
3. Lists: arbitrary length

Mutagenesis

data set, description of molecules in json-like format.

```
[Dict]
            lumo: [Scalar - Float64]
                inda: [Scalar - Int64]
                logp: [Scalar - Float64, Int64]
                ind1: [Scalar - Int64]
    _ atoms: [List]
            L [Dict]
```


Discriminative learning: HMIL

Hierarchical Multi-instance Learning ${ }^{1}$ - no message passing

- hierarchical application of NN projection (Leafs,Lists), aggregation (Lists), and concatenation (Dict)

- Highly automated to handle various data types, missing data, etc. ${ }^{2}$
- Clustering? We do not have a metric neither probability distribution (likelihood).

[^0]
Global goal: density learning

Tools of probability for JSON structure:

- Leaf: probability density of vector data, $p(x)$
- Dict: joint probability density, $p(a, b, c)$
- List: random set theory, $p(X), X=\left\{x_{1}, x_{2} \ldots, x_{n}\right\}$

Challenges:

1. How to represent Leafs?

- many types! compact representation

2. Dependent or independent Dict?

- incomplete data, discrete data

3. Proper treatment of cardinality in Lists?

Roadmap: probability learning

Vector data

Full Hierarchy

Comparing vector data density models

1. Classical GMM, $p(x)=\sum_{i=1}^{k} w_{i} \mathcal{N}(\mu, \Sigma)$

K Nearest Neighbors

Comparing vector data density models

1. Classical GMM, $p(x)=\sum_{i=1}^{k} w_{i} \mathcal{N}(\mu, \Sigma)$
2. Kernel methods (kNN, OC-SVM)

K Nearest Neighbors

Comparing vector data density models

1. Classical GMM, $p(x)=\sum_{i=1}^{k} w_{i} \mathcal{N}(\mu, \Sigma)$
2. Kernel methods (kNN, OC-SVM)
3. Flow models, $x=f(z)$, from known $p_{z}(z)$, via

$$
p(x)=p_{z}(z)|\operatorname{det} J(z)|, \quad z=f^{-1}(x)
$$

for invertible f. (Special purpose NN: MAF,
 RNVP).

K Nearest Neighbors

Comparing vector data density models

1. Classical GMM, $p(x)=\sum_{i=1}^{k} w_{i} \mathcal{N}(\mu, \Sigma)$
2. Kernel methods (kNN, OC-SVM)
3. Flow models, $x=f(z)$, from known $p_{z}(z)$, via

$$
p(x)=p_{z}(z)|\operatorname{det} J(z)|, \quad z=f^{-1}(x)
$$

for invertible f. (Special purpose NN: MAF, RNVP).
4. Autoencoder-based models, $x=f(z)+e$,

$$
p(x)=\int p(x \mid z) p(z) d z
$$

with inherent dimensionality reduction, $\operatorname{dim}(z)<\operatorname{dim}(x)$. VAE or WAE.

$x=\left[z^{2}, z\right]+e$,

$$
z \sim \mathcal{N}(0.5,0.15)
$$

K Nearest Neighbors

Comparing vector data density models

1. Classical GMM, $p(x)=\sum_{i=1}^{k} w_{i} \mathcal{N}(\mu, \Sigma)$
2. Kernel methods (kNN, OC-SVM)
3. Flow models, $x=f(z)$, from known $p_{z}(z)$, via

$$
p(x)=p_{z}(z)|\operatorname{det} J(z)|, \quad z=f^{-1}(x)
$$

for invertible f. (Special purpose NN: MAF, RNVP).
4. Autoencoder-based models, $x=f(z)+e$,

$$
p(x)=\int p(x \mid z) p(z) d z
$$

with inherent dimensionality reduction, $\operatorname{dim}(z)<\operatorname{dim}(x)$. VAE or WAE.
5. Others: two-stage models, GANs,

$x=\left[z^{2}, z\right]+e$,
$z \sim \mathcal{N}(0.5,0.15)$

K Nearest Neighbors

Comparing vector data density models

1. Classical GMM, $p(x)=\sum_{i=1}^{k} w_{i} \mathcal{N}(\mu, \Sigma)$
2. Kernel methods (kNN, OC-SVM)
3. Flow models, $x=f(z)$, from known $p_{z}(z)$, via

$$
p(x)=p_{z}(z)|\operatorname{det} J(z)|, \quad z=f^{-1}(x)
$$

for invertible f. (Special purpose NN: MAF, RNVP).
4. Autoencoder-based models, $x=f(z)+e$,

$$
p(x)=\int p(x \mid z) p(z) d z
$$

with inherent dimensionality reduction, $\operatorname{dim}(z)<\operatorname{dim}(x)$. VAE or WAE.
5. Others: two-stage models, GANs,

Evaluation metric: anomaly detection (out of distribution detection).

$x=\left[z^{2}, z\right]+e$,

$$
z \sim \mathcal{N}(0.5,0.15)
$$

K Nearest Neighbors

Anomaly / out-of-distribution / novelty detection

Anomaly is sample different from others that it raises suspicion that it was generated by a different process than normal samples.

The anomaly is either

- far away from normal samples
- what is the right distance?
- less likely than normal samples
- likelihood function?

Anomaly detection process

1. Training is done of normal data (no contamination)

Anomaly detection process

1. Training is done of normal data (no contamination)
2. Method should provide an anomaly score, typically negative log-likelihood

$$
s(x)=-\log p(x)
$$

Anomaly detection process

1. Training is done of normal data (no contamination)
2. Method should provide an anomaly score, typically negative log-likelihood

$$
s(x)=-\log p(x)
$$

3. Test on both normal and anomalous. Score them all.

Anomaly detection process

1. Training is done of normal data (no contamination)
2. Method should provide an anomaly score, typically negative log-likelihood

$$
s(x)=-\log p(x)
$$

3. Test on both normal and anomalous. Score them all.
4. The results are evaluated as binary classification with threshold, AUC

Anomaly detection process

1. Training is done of normal data (no contamination)
2. Method should provide an anomaly score, typically negative log-likelihood

$$
s(x)=-\log p(x)
$$

3. Test on both normal and anomalous. Score them all.
4. The results are evaluated as binary classification with threshold, AUC ROC curve

Large scale study

Basic Statistics of Image Datasets Designed for Anomaly
Detection (Above Split) and Multiclass
Datasets (BElow Split)

dataset	alias	dim	anom	normal
MNIST-C	mnistc	$28 \times 28 \times 1$	70000	70000
MVTec-AD - wood	wood	$1024 \times 1024 \times 3$	60	266
MVTec-AD - grid	grid	$1024 \times 1024 \times 3$	57	285
MVTec-AD - transistor	transistor	$1024 \times 1024 \times 3$	40	273
CIFAR10	cifar10	$32 \times 32 \times 3$	54000	6000
FashionMNIST	fmnist	$28 \times 28 \times 1$	63000	7000
MNIST	mnist	$28 \times 28 \times 1$	63686	6312
SVHN2	svhn2	$32 \times 32 \times 3$	80327	18960

Overview of the Main Classes of Compared Methods and the Acronyms Used in the Text

class	model	acronym	class	model	acronym
$\begin{aligned} & \text { n} \\ & 0 \\ & \hline 0 \end{aligned}$	MAF	maf	㜢	DAGMM	dgmm
	RealNVP	rnvp		DeepSVDD	dsvd
	SPTN	sptn		REPEN	rpn
				VAE-kNN	vaek
	AAE	aae		VAE-OC-SVM	vaeo
	adVAE	avae	$\begin{aligned} & \text { I. } \\ & \frac{5}{w} \\ & \frac{5}{0} \end{aligned}$		
	GANomaly	gano		ABOD	abod
	skipGANomaly	skip		HBOS	hbos
	VAE	vae		IsolationForest	if
	WAE	wae		kNN	knn
$\stackrel{0}{5}$				LODA	loda
	fAnoGAN	fano		LOF	lof
	fmGAN	fmgn		OC-SVM	osvm
	GAN MOGAAL	gan mgal		PidForest	pidf

dataset	alias	dim	anom	normal
ANNthyroid	ann	21	534	6665
Arrhythmia	arr	275	206	245
HAR	har	561	1944	8355
HTRU2	htr	8	1638	16257
KDD99 (10\%)	kdd	118	396742	97276
Mammography	mam	6	260	10921
Seismic	sei	24	170	2412
Spambase	spm	57	1812	2786
Abalone	aba	10	50	2151
Blood Transfusion	blt	4	16	382
Breast Cancer Wisconsin	bcw	30	206	356
Breast Tissue	bts	9	22	65
Cardiotocography	crd	27	228	1830
Ecoli	eco	7	108	205
Glass	gls	10	94	112
Haberman	hab	3	14	225
Ionosphere	ion	33	122	225
Iris	irs	4	46	100
Isolet	iso	617	3300	4496
Letter Recognition	ltr	617	3600	4196
Libras	lbr	90	142	215
Magic Telescope	mgc	10	3882	12331
Miniboone	mnb	50	23922	93565
Multiple Features	mlt	649	800	1200
PageBlocks	pgb	10	384	4911
Parkinsons	prk	22	44	146
Pendigits	pen	16	5384	5537
Pima Indians	pim	8	176	500
Sonar	snr	60	96	110
Spect Heart	sph	44	52	211
Statlog Satimage	sat	36	2630	3592
Statlog Segment	seg	18	938	1320
Statlog Shuttle	sht	8	28	57767
Statlog Vehicle	vhc	18	132	627
Synthetic Control Chart	scc	60	200	400

Lessons learned:

- Hyperparameters important for all
- How many anomalies available for hyper-parameter selection

validation	tabular data	image stat	image semantic
no anomalies	KNN (Flow)	VAE	DSVD
many anomalies	OCSVM (VAE)	VAE	fmGAN (VAE)

- Score in VAE treated a hyperparameter
- Poor performance of complex methods ${ }^{3}$

[^1]
Lessons learned:

- Hyperparameters important for all
- How many anomalies available for hyper-parameter selection

validation	tabular data	image stat	image semantic
no anomalies	KNN (Flow)	VAE	DSVD
many anomalies	OCSVM (VAE)	VAE	fmGAN (VAE)

- Score in VAE treated a hyperparameter
- Poor performance of complex methods ${ }^{3}$

Open issues:

- Discrete data (overfitting on some)
- Issues with multi-modal distributions
- Huge Flows

- Mixtures of simple Flows?

Space for a new model?

[^2]
Sum-product Networks (SPN)

Representation of probability functions proposed by Poon and Domingos ${ }^{4}$ as a computational graph. Combines two types of "nodes" operating on selected elements \bar{x} of vector x :

Leaf node

$p_{L}(\bar{x})=\left\{\begin{array}{l}\mathcal{N}(\mu, \sigma) \\ P o(\lambda) \\ \ldots\end{array}\right.$

$p_{S}(\bar{x})=\sum_{N \in \operatorname{Ch}(S)} w_{N} \cdot p_{N}(\bar{x})$

Product node

$p_{P}(\vec{x})=\prod_{N \in \operatorname{Ch}(P)} p_{N}\left(\vec{x}_{N}\right)$

Only independent products!

- Allow for tractable marginals
- Dependence due to sum nodes

[^3]
Examples

Mixture model in 1d: $p\left(x_{1}\right)$

$$
p\left(x_{1}\right)=w p_{1}\left(x_{1}\right)+(1-w) p_{2}\left(x_{1}\right)
$$

Mixture model in 2d: [x_{1}, x_{2}]

$$
\begin{aligned}
p\left(x_{1}, x_{2}\right)= & w\left(u p_{1}\left(x_{1}\right)+(1-u) p_{2}\left(x_{1}\right)\right) p_{3}\left(x_{2}\right) \\
& (1-w) p_{2}\left(x_{1}\right)\left(v p_{3}\left(x_{2}\right)+(1-u) p_{4}\left(x_{2}\right)\right)
\end{aligned}
$$

- Sharing parametrization
- Structure estimation
- Combining different distributions!
- categorical
- continuous
- Advantages in higher-dimensions

Sum-product-transform networks

Original SPN focus mostly on cathegorical data, less attention to continuous.
We ${ }^{5}$ proposed to combine SPN with Flow models:

Transformation node

$$
\begin{aligned}
p(x) & =p_{z}(z)|\operatorname{det} J(z)| \\
z & =f^{-1}(x)
\end{aligned}
$$

Lightweight flow:

Dense layer with SDV weight matrix

$$
y=\sigma(A x+b)=\sigma(U D V x+b)
$$

where U, D, V can be learned by GD. Tractable Jacobian

$$
\log \operatorname{det} J(z)=\sum_{i=1}^{d} \log d_{i i}+\sum_{i=1}^{d} \log \frac{\partial \sigma}{\partial z}
$$

- For continuous data, $\sigma=$ identity, and leafs $N(0,1)$, the model becomes a fancy mixture of Gaussians (block covariance matrices)
- On the anomaly detection task, the model is comparable to other flow models.

[^4]
Example

(b) sptn

- SPTN on anomaly detection benchmark comparable to flow models.
- Slow inference.
- progress using Metropolis-Hastings MC ${ }^{6}$

[^5]
Roadmap: probability learning

Vector data

Set data

Full Hierarchy

Probability models of sets of data

By a set of data, we understand an unordered set of feature vectors, $X=\left\{x_{1}, \ldots x_{n}\right\}$ for arbitrary $n \in \mathbb{N}$.

IID cluster all vectors in the set are realizations from the same distribution

$$
x_{i} \sim p_{x}(x), \quad n \sim p_{c}(\lambda)
$$

The set can be perceived as an empirical distribution. Formally simple.

1. Kernel methods with statistical divergence ${ }^{7}$ or Chamfer distance

$$
D_{C H}\left(X, X^{\prime}\right)=\frac{1}{n} \sum_{i} \min _{j}\left\|x_{i}-x_{j}^{\prime}\right\|_{2}^{2}+\frac{1}{n^{\prime}} \sum_{j} \min _{i}\left\|x_{i}-x_{j}^{\prime}\right\|_{2}^{2}
$$

2. Likelihood of a random set

$$
p(X)=p_{c}(n) U^{n} n!\prod_{i=1}^{n} p_{x}\left(x_{i}\right)
$$

with MLE estimation from union of all feature vectors. "Just" choose p_{x}, p_{c}.

[^6]
Comparison on Set Anomaly Detection

Compared methods

Methods

- OCSVM on chamfer or mmd distance
- IVAE learn regular VAE on features points, $p(x)$
- Pool aggregate features to "embedding", generate from it
- NeuralStat combination of IVAE and Pool
- SetVAE transformer-based model of sets

Data sets:

- MNIST point cloud
- MVTech - SIFT features
- MI problems
- LHC challenge

Lessons learned

1. Likelihood is useless as an anomaly measure!

- HPD region of $N(0,1)$

${ }^{a}$ Vo, B.N., Dam, N., Phung, D., Tran, Q.N. and Vo, B.T., 2018. Model-based learning for point pattern data. Pattern Recognition, 84, pp.136-151.

Lessons learned

1. Likelihood is useless as an anomaly measure!

- HPD region of $N(0,1)$
- HPD region of

$$
\frac{1}{2} N(0,1)+\frac{1}{2} N(12,3)
$$

Lessons learned

1. Likelihood is useless as an anomaly measure!

- HPD region of $N(0,1)$
- HPD region of $\frac{1}{2} N(0,1)+\frac{1}{2} N(12,3)$
- Random finite set likelihood is a mixture of components in increasing dimensions
- Likelihood is either rejecting high or low cardinalities

[^7]

Lessons learned

1. Likelihood is useless as an anomaly measure!

- HPD region of $N(0,1)$
- HPD region of $\frac{1}{2} N(0,1)+\frac{1}{2} N(12,3)$
- Random finite set likelihood is a mixture of components in increasing dimensions
- Likelihood is either rejecting high or low cardinalities

2. Known issue ${ }^{a}$ with proposed fix

$$
s(X)=-\log p(X)-n \log U
$$

where $U=\int p(x)^{2} d x$.

[^8]

Results: ranks of anomaly detectors

collection	\# a.	IVAE	VB	IVAE-CH	NS	PoolModel	SetVAE	FN-VAE	HMIL
MNIST	0	5.800	5.400	3.200	5.700	$\mathbf{1 . 1 0 0}$	4.800	2.000	-
(class	5	3.800	5.700	4.600	4.600	$\mathbf{1 . 5 0 0}$	4.300	3.600	7.900
anomalies)	10	4.900	5.700	4.100	4.600	$\mathbf{1 . 2 0 0}$	4.300	3.300	7.900
	all	5.600	$\mathbf{6 . 7 0 0}$	5.100	5.500	2.400	5.300	4.400	$\mathbf{1 . 0 0 0}$
MIL	0	$\mathbf{2 . 1 1 1}$	$\mathbf{5 . 6 6 7}$	4.222	2.222	3.056	5.333	5.389	-
datasets	5	$\mathbf{2 . 1 6 7}$	4.722	4.944	2.278	3.611	6.278	6.111	5.889
(mixed	10	1.778	4.500	5.444	2.000	3.778	6.667	6.333	5.500
anomalies)	all	$\mathbf{2 . 1 1 1}$	4.889	5.889	2.167	4.500	6.722	6.778	2.889
MV-TEC	0	$\mathbf{2 . 2 5 0}$	5.000	5.750	2.500	3.750	4.500	4.250	-
(instance	5	2.250	5.250	5.250	$\mathbf{1 . 2 5 0}$	4.750	5.000	4.750	7.500
anomalies)	10	2.500	5.000	4.250	$\mathbf{1 . 5 0 0}$	4.750	5.000	5.250	7.750
	all	2.750	5.750	5.500	2.250	5.750	6.250	6.500	$\mathbf{1 . 2 5 0}$

- Pooling important on point-clouds
- Complicated methods not improving
- VAE works well, NS just a slight differences for VAE
- Score:
- Vo's fix not working
- estimation of $\log U$ much better
- mean $\left(p\left(x_{i}\right)\right)$ almost the best
- Missing theory!

Roadmap: probability learning

Vector data

Full Hierarchy

Sum-Product-Set Networks

Tools of probability for JSON structure:

```
[Dict]
    _ Iumo: [Scalar - Float64]
    - inda: [Scalar - Int64]
    logp: [Scalar - Float64, Int64]
    -ind1: [Scalar - Int64]
    - atoms: [List]
            \llcorner[Dict]
```


Leaf: probability density of vector data $=$ SPN
Dict: joint probability density $=$ SPN

Sum-Product-Set Networks

Tools of probability for JSON structure:

```
[Dict]
    - Iumo: [Scalar - Float64]
    -inda: [Scalar - Int64]
    logp: [Scalar - Float64, Int64]
    - ind1: [Scalar - Int64]
    _ atoms: [List]
            L [Dict]
```


Leaf: probability density of vector data $=$ SPN
Dict: joint probability density $=$ SPN
List: random set theory, $p(X)$,

$$
X=\left\{x_{1}, x_{2} \ldots, x_{n}\right\}
$$

Sum-Product-Set Networks

Tools of probability for JSON structure:

```
[Dict]
    - lumo: [Scalar - Float64]
        inda: [Scalar - Int64]
        logp: [Scalar - Float64, Int64]
        - ind1: [Scalar - Int64]
    - atoms: [List]
        - [Dict]
```


Leaf: probability density of vector data $=$ SPN Dict: joint probability density $=$ SPN
List: random set theory, $p(X)$,
$X=\left\{x_{1}, x_{2} \ldots, x_{n}\right\}$
New node: SetNode

$$
\begin{aligned}
p_{\mathrm{Set}}(X)= & p_{c}(n)|n|! \\
& \prod_{i=1}^{n} p_{f}\left(x_{i}\right) .
\end{aligned}
$$

Acts as any node (can be nested) with constraints.

Automatic probabilistic model for JSON

SPSN probabilistic model

ProductNode

- lumo: Categorical
- inda: Categorical
logp: Categorical
ind1: Categorical
- atoms: SetNode
- c: Poisson

I: ProductNode

- Cardinality is Poisson distributed
- Continuous variables represented by a 2component GMM.

Automatic probabilistic model for JSON

HMIL discriminative learner

SPSN probabilistic model

ProductNode

- lumo: Categorical
- inda: Categorical
- logp: Categorical
- ind1: Categorical
- atoms: SetNode
- c: Poisson
f: ProductNode

- Cardinality is Poisson distributed
- Continuous variables represented by a 2component GMM.

	Accuracy	\# parameters
HMill classifier	$\mathbf{0 . 8 8 6}$	4172
SPSN classifier (likelihood ratio)	0.818	$\mathbf{5 1 6}$

Results on MI problems

dataset/model	HMill classifier	SPSN classifier
brown_creeper	$\mathbf{0 . 9 3 6}$	0.921
corel_african	$\mathbf{0 . 9 4 8}$	$\mathbf{0 . 9 4 8}$
corel_beach	0.968	$\mathbf{0 . 9 8 2}$
elephant	0.785	$\mathbf{0 . 7 9}$
fox	$\mathbf{0 . 5 6 5}$	0.555
musk_1	$\mathbf{0 . 8 0 0}$	0.667
musk_2	0.779	$\mathbf{0 . 8 6}$
mutagenesis_1	$\mathbf{0 . 8 3 3}$	0.728
mutagenesis_2	$\mathbf{0 . 8 2 5}$	0.675
protein	$\mathbf{0 . 9 4 7}$	0.863
tiger	$\mathbf{0 . 8 1 0}$	0.715
ucsb_breast_cancer	$\mathbf{0 . 7 8 0}$	0.64
winter_wren	$\mathbf{0 . 9 9 1}$	0.908

Model-based clustering of graphs

Graph dataset (karate)

Results of 2component SPSN

Conclusion: density learning state of the art

1. Density learning on vector data
1.1 classical methods still valueable
1.2 deep models suitable for image data
1.3 space for new models on heterogenous data
1.4 challenges for complex problems (semantic data)
2. Density learning on set data
2.1 poor results of kernel methods
2.2 space for smart combination of set-embedding and feature-embedding
2.3 how to properly treat cardinality in anomaly detection?
3. Sum-product-set networks
3.1 elementary blocks are ready
3.2 computational speed
3.3 structure selection
3.4 anomaly score?

[^0]: ${ }^{1}$ Pevny, T. and Somol, P., 2016, October. Discriminative models for multi-instance problems with tree structure. In Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security (pp. 83-91).
 ${ }^{2}$ Mandlík, Š., Račinský, M., Lisý, V. and Pevný, T., 2022. JsonGrinder. jl: automated differentiable neural architecture for embedding arbitrary JSON data. Journal of Machine Learning Research, 23(298), pp.1-5.

[^1]: 3Škvára, V., Francu, J., Zorek, M., Pevný, T. and Šmídl, V., 2021. Comparison of anomaly detectors: context matters. IEEE Transactions on Neural Networks and Learning Systems, 33(6), pp.2494-2507.

[^2]: ${ }^{3}$ Škvára, V., Francu, J., Zorek, M., Pevný, T. and Šmídl, V., 2021. Comparison of anomaly detectors: context matters. IEEE Transactions on Neural Networks and Learning Systems, 33(6), pp.2494-2507.

[^3]: ${ }^{4}$ Poon, H. and Domingos, P., 2011, November. Sum-product networks: A new deep architecture. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (pp. 689-690). IEEE.

[^4]: ${ }^{5}$ Pevný, T., Smídl, V., Trapp, M., Poláček, O. and Oberhuber, T., 2020, February. Sum-product-transform networks: Exploiting symmetries using invertible transformations. In International Conference on Probabilistic Graphical Models (pp. 341-352). PMLR.

[^5]: ${ }^{6}$ Papez, M., Pevný, T. and Smidl, V., Reducing the Cost of Fitting Mixture Models via Stochastic Sampling. In The 5th Workshop on Tractable Probabilistic Modeling. UAI 2022

[^6]: ${ }^{7}$ Muandet, K., Fukumizu, K., Dinuzzo, F. and Schölkopf, B., 2012. Learning from distributions via support measure machines. Advances in neural information processing systems, 25.

[^7]: ${ }^{a}$ Vo, B.N., Dam, N., Phung, D., Tran, Q.N. and Vo, B.T., 2018. Model-based learning for point pattern data. Pattern Recognition, 84, pp.136-151.

[^8]: ${ }^{a}$ Vo, B.N., Dam, N., Phung, D., Tran, Q.N. and Vo, B.T., 2018. Model-based learning for point pattern data. Pattern Recognition, 84, pp.136-151.

