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Motivation: tree structured data

Classical machine learning methods:
Consider data in the form of
d-dimensional vectors x ∈ Rd .

Classifiers:
▶ Random Forest
▶ SVM
▶ Neural networks...

Natural parametrization:

Classify Iris flowers:

Feature engineering 4d vector:
1. Sepal length
2. Sepal width
3. Petal length
4. Petal width

▶ Which leaf to choose?
▶ Or average them?
▶ Does their count matter?
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Tree-structured data: examples

Hierarchical tree structured data = special case of graph data composed of
three types of nodes:

1. Leafs: Scalar/Vector/Tensor
2. Dicts: key-value pairs
3. Lists: arbitrary length

Mutagenesis
data set, description of molecules in json-like format.

[Dict] 
  ├─── lumo: [Scalar - Float64]
  ├─── inda: [Scalar - Int64]
  ├─── logp: [Scalar – Float64, Int64]
  ├─── ind1: [Scalar - Int64]
  ╰── atoms: [List] 
                       ╰── [Dict] 
                                 ├──── element: [Scalar - String]
                                 ├────── bonds: [List] 
                                 │                           ╰── [Dict]
                                 │                                    ├──── element: [Scalar - String]
                                 │                                    ├── bond_type: [Scalar - Int64]
                                 │                                    ├───── charge: [Scalar - Float64]
                                 │                                    ╰── atom_type: [Scalar - Int64]
                                 ├───── charge: [Scalar - Float64]
                                 ╰── atom_type: [Scalar - Int64]



Discriminative learning: HMIL

Hierarchical Multi-instance Learning1 – no message passing
▶ hierarchical application of NN projection (Leafs,Lists), aggregation (Lists),

and concatenation (Dict)

▶ Highly automated to handle various data types, missing data, etc.2
▶ Clustering? We do not have a metric neither probability distribution

(likelihood).
1Pevny, T. and Somol, P., 2016, October. Discriminative models for multi-instance problems

with tree structure. In Proceedings of the 2016 ACM Workshop on Artificial Intelligence and
Security (pp. 83-91).

2Mandlík, Š., Račinský, M., Lisý, V. and Pevný, T., 2022. JsonGrinder. jl: automated
differentiable neural architecture for embedding arbitrary JSON data. Journal of Machine Learning
Research, 23(298), pp.1-5.



Global goal: density learning

Tools of probability for JSON structure:

▶ Leaf: probability density of vector data, p(x)
▶ Dict: joint probability density, p(a, b, c)
▶ List: random set theory, p(X), X = {x1, x2 . . . , xn}

Challenges:

1. How to represent Leafs?
▶ many types! compact representation

2. Dependent or independent Dict?
▶ incomplete data, discrete data

3. Proper treatment of cardinality in Lists?



Roadmap: probability learning

Vector data Set data Full Hierarchy
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Comparing vector data density models

1. Classical GMM, p(x) =
∑k

i=1 wi N (µ, Σ)

2. Kernel methods (kNN, OC-SVM)
3. Flow models, x = f (z), from known pz(z), via

p(x) = pz(z)|detJ(z)|, z = f −1(x)

for invertible f . (Special purpose NN: MAF,
RNVP).

4. Autoencoder-based models, x = f (z) + e,

p(x) =
∫

p(x |z)p(z)dz

with inherent dimensionality reduction,
dim(z) < dim(x). VAE or WAE.

5. Others: two-stage models, GANs,
Evaluation metric: anomaly detection (out of
distribution detection).

x = [z2, z] + e,

z ∼ N (0.5, 0.15)
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Anomaly / out-of-distribution / novelty detection

Anomaly is sample different from others that it raises suspicion that it
was generated by a different process than normal samples.

The anomaly is either
▶ far away from normal samples

▶ what is the right distance?
▶ less likely than normal samples

▶ likelihood function?



Anomaly detection process

1. Training is done of normal data (no
contamination)

2. Method should provide an anomaly
score, typically negative log-likelihood

s(x) = − log p(x)

3. Test on both normal and anomalous.
Score them all.

4. The results are evaluated as binary
classification with threshold, AUC
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Large scale study



Lessons learned:

▶ Hyperparameters important for all
▶ How many anomalies available for hyper-parameter selection

validation tabular data image stat image semantic
no anomalies KNN (Flow) VAE DSVD

many anomalies OCSVM (VAE) VAE fmGAN (VAE)
▶ Score in VAE treated a hyperparameter
▶ Poor performance of complex methods3

Open issues:
▶ Discrete data (overfitting on

some)
▶ Issues with multi-modal

distributions
▶ Huge Flows
▶ Mixtures of simple Flows?

Space for a new model?

3Škvára, V., Francu, J., Zorek, M., Pevný, T. and Šmídl, V., 2021. Comparison of anomaly
detectors: context matters. IEEE Transactions on Neural Networks and Learning Systems, 33(6),
pp.2494-2507.
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Sum-product Networks (SPN)

Representation of probability functions proposed by Poon and Domingos4 as a
computational graph. Combines two types of “nodes” operating on selected
elements x of vector x :

Leaf node
pL

pL(x) =


N (µ, σ)
Po(λ)
. . .

Sum node

+S

N1 N2 . . . Nn

pS(x) =
∑

N∈Ch(S)

wN ·pN(x)

Product node

×P

N1 N2 . . . Nm

pP(x⃗) =
∏

N∈Ch(P)

pN(x⃗N)

Only independent products!

▶ Allow for tractable marginals
▶ Dependence due to sum nodes

4Poon, H. and Domingos, P., 2011, November. Sum-product networks: A new deep
architecture. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV
Workshops) (pp. 689-690). IEEE.



Examples

Mixture model in 1d: p(x1)
+S

pL1 pL2

p(x1) = wp1(x1) + (1 − w)p2(x1)

Mixture model in 2d: [x1, x2]
+S1

×P1 ×P2

+S2 +S3

x1L1 x1L2 x2L3 x2L4

p(x1, x2) =w (up1(x1) + (1 − u)p2(x1)) p3(x2)
(1 − w)p2(x1) (vp3(x2) + (1 − u)p4(x2))

▶ Sharing parametrization
▶ Structure estimation
▶ Combining different distributions!

▶ categorical
▶ continuous

▶ Advantages in higher-dimensions



Sum-product-transform networks

Original SPN focus mostly on cathegorical data, less attention to continuous.

We5 proposed to combine SPN with Flow models:

Transformation node

fT

N1

p(x) = pz(z)|detJ(z)|,
z = f −1(x)

Lightweight flow:
Dense layer with SDV weight matrix

y = σ(Ax + b) = σ(UDVx + b)

where U, D, V can be learned by GD.
Tractable Jacobian

log detJ(z) =
d∑

i=1

log dii +
d∑

i=1

log ∂σ

∂z

▶ For continuous data, σ = identity, and leafs N(0, 1), the model becomes a
fancy mixture of Gaussians (block covariance matrices)

▶ On the anomaly detection task, the model is comparable to other flow
models.

5Pevný, T., Smídl, V., Trapp, M., Poláček, O. and Oberhuber, T., 2020, February.
Sum-product-transform networks: Exploiting symmetries using invertible transformations. In
International Conference on Probabilistic Graphical Models (pp. 341-352). PMLR.



Example

+
p(x)

f1

p1(x)

f2 · · · f9

p9(x)

×
pi (y)

g1

p(y1)

g2

p(y2)

N(0,1)

− 4 − 2 0 2 4

− 4

− 2

0

2

4

(b) sptn

▶ SPTN on anomaly detection benchmark comparable to flow models.
▶ Slow inference.

▶ progress using Metropolis-Hastings MC6

6Papez, M., Pevný, T. and Smidl, V., Reducing the Cost of Fitting Mixture Models via
Stochastic Sampling. In The 5th Workshop on Tractable Probabilistic Modeling. UAI 2022
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Probability models of sets of data

By a set of data, we understand an unordered set of feature vectors,
X = {x1, . . . xn} for arbitrary n ∈ N.

IID cluster all vectors in the set are realizations from the same distribution

xi ∼ px (x), n ∼ pc(λ),

The set can be perceived as an empirical distribution. Formally simple.

1. Kernel methods with statistical divergence7 or Chamfer distance

DCH(X , X ′) = 1
n

∑
i

min
j

∥xi − x ′
j ∥2

2 + 1
n′

∑
j

min
i

∥xi − x ′
j ∥2

2

2. Likelihood of a random set

p(X) = pc(n)Unn!
n∏

i=1

px (xi ),

with MLE estimation from union of all feature vectors. “Just” choose
px , pc .

7Muandet, K., Fukumizu, K., Dinuzzo, F. and Schölkopf, B., 2012. Learning from distributions
via support measure machines. Advances in neural information processing systems, 25.



Comparison on Set Anomaly Detection

normal

cardinality type outlier



Compared methods

Methods
▶ OCSVM on chamfer or mmd

distance
▶ IVAE learn regular VAE on

features points, p(x)
▶ Pool aggregate features to

“embedding”, generate from it
▶ NeuralStat combination of

IVAE and Pool
▶ SetVAE transformer-based

model of sets

Data sets:
▶ MNIST point cloud
▶ MVTech – SIFT features
▶ MI problems
▶ LHC challenge



Lessons learned

1. Likelihood is useless as an
anomaly measure!
▶ HPD region of N(0, 1)

▶ HPD region of
1
2 N(0, 1) + 1

2 N(12, 3)
▶ Random finite set likelihood

is a mixture of components
in increasing dimensions

▶ Likelihood is either rejecting
high or low cardinalities

2. Known issuea with proposed fix

s(X) = − log p(X) − n log U

where U =
∫

p(x)2dx .

aVo, B.N., Dam, N., Phung, D., Tran,
Q.N. and Vo, B.T., 2018. Model-based
learning for point pattern data. Pattern
Recognition, 84, pp.136-151.
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Results: ranks of anomaly detectors

▶ Pooling important on point-clouds
▶ Complicated methods not improving
▶ VAE works well, NS just a slight differences for VAE
▶ Score:

▶ Vo’s fix not working
▶ estimation of log U much better
▶ mean(p(xi )) almost the best

▶ Missing theory!



Roadmap: probability learning

Vector data Set data Full Hierarchy

[Dict] 
  ├─── lumo: [Scalar - Float64]
  ├─── inda: [Scalar - Int64]
  ├─── logp: [Scalar – Float64, Int64]
  ├─── ind1: [Scalar - Int64]
  ╰── atoms: [List] 
                       ╰── [Dict] 
                                 ├──── element: [Scalar - String]
                                 ├────── bonds: [List] 
                                 │                           ╰── [Dict]
                                 │                                    ├──── element: [Scalar - String]
                                 │                                    ├── bond_type: [Scalar - Int64]
                                 │                                    ├───── charge: [Scalar - Float64]
                                 │                                    ╰── atom_type: [Scalar - Int64]
                                 ├───── charge: [Scalar - Float64]
                                 ╰── atom_type: [Scalar - Int64]



Sum-Product-Set Networks

Tools of probability for JSON structure:
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                                 │                                    ├───── charge: [Scalar - Float64]
                                 │                                    ╰── atom_type: [Scalar - Int64]
                                 ├───── charge: [Scalar - Float64]
                                 ╰── atom_type: [Scalar - Int64]

Leaf: probability density of vector data = SPN
Dict: joint probability density = SPN

List: random set theory, p(X),
X = {x1, x2 . . . , xn}
New node: SetNode

{}Set

pL

N

c

f

pSet(X) =pc(n) |n|!
n∏

i=1

pf (xi ) .

Acts as any node
(can be nested) with

constraints.
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Automatic probabilistic model for JSON

HMIL discriminative learner
[Dict] 
  ├─── lumo: [Scalar - Float64]
  ├─── inda: [Scalar - Int64]
  ├─── logp: [Scalar – Float64, Int64]
  ├─── ind1: [Scalar - Int64]
  ╰── atoms: [List] 
                       ╰── [Dict] 
                                 ├──── element: [Scalar - String]
                                 ├────── bonds: [List] 
                                 │                           ╰── [Dict]
                                 │                                    ├──── element: [Scalar - String]
                                 │                                    ├── bond_type: [Scalar - Int64]
                                 │                                    ├───── charge: [Scalar - Float64]
                                 │                                    ╰── atom_type: [Scalar - Int64]
                                 ├───── charge: [Scalar - Float64]
                                 ╰── atom_type: [Scalar - Int64]

SPSN probabilistic model
ProductNode
        ├─── lumo: Categorical
        ├─── inda: Categorical
        ├─── logp: Categorical
        ├─── ind1: Categorical
        ╰── atoms: SetNode
                                ├── c: Poisson
                                ╰── f: ProductNode
                                                  ├──── element: Categorical
                                                  ├────── bonds: SetNode
                                                  │                             ├── c: Poisson
                                                  │                             ╰── f: ProductNode
                                                  │                                               ├──── element: Categorical
                                                  │                                               ├── bond_type: Categorical
                                                  │                                               ├───── charge: SumNode
                                                  │                                               │                              ├── Normal
                                                  │                                               │                              ╰── Normal
                                                  │                                               ╰── atom_type: Categorical
                                                  ├───── charge: SumNode
                                                  │                              ├── Normal
                                                  │                              ╰── Normal
                                                  ╰── atom_type: Categorical

      

▶ Cardinality is Poisson distributed
▶ Continuous variables represented by a

2component GMM.

Accuracy # parameters
HMill classifier 0.886 4172
SPSN classifier (likelihood ratio) 0.818 516



Automatic probabilistic model for JSON

HMIL discriminative learner
[Dict] 
  ├─── lumo: [Scalar - Float64]
  ├─── inda: [Scalar - Int64]
  ├─── logp: [Scalar – Float64, Int64]
  ├─── ind1: [Scalar - Int64]
  ╰── atoms: [List] 
                       ╰── [Dict] 
                                 ├──── element: [Scalar - String]
                                 ├────── bonds: [List] 
                                 │                           ╰── [Dict]
                                 │                                    ├──── element: [Scalar - String]
                                 │                                    ├── bond_type: [Scalar - Int64]
                                 │                                    ├───── charge: [Scalar - Float64]
                                 │                                    ╰── atom_type: [Scalar - Int64]
                                 ├───── charge: [Scalar - Float64]
                                 ╰── atom_type: [Scalar - Int64]

SPSN probabilistic model
ProductNode
        ├─── lumo: Categorical
        ├─── inda: Categorical
        ├─── logp: Categorical
        ├─── ind1: Categorical
        ╰── atoms: SetNode
                                ├── c: Poisson
                                ╰── f: ProductNode
                                                  ├──── element: Categorical
                                                  ├────── bonds: SetNode
                                                  │                             ├── c: Poisson
                                                  │                             ╰── f: ProductNode
                                                  │                                               ├──── element: Categorical
                                                  │                                               ├── bond_type: Categorical
                                                  │                                               ├───── charge: SumNode
                                                  │                                               │                              ├── Normal
                                                  │                                               │                              ╰── Normal
                                                  │                                               ╰── atom_type: Categorical
                                                  ├───── charge: SumNode
                                                  │                              ├── Normal
                                                  │                              ╰── Normal
                                                  ╰── atom_type: Categorical

      

▶ Cardinality is Poisson distributed
▶ Continuous variables represented by a

2component GMM.

Accuracy # parameters
HMill classifier 0.886 4172
SPSN classifier (likelihood ratio) 0.818 516



Results on MI problems

dataset/model HMill classifier SPSN classifier
brown_creeper 0.936 0.921
corel_african 0.948 0.948
corel_beach 0.968 0.982
elephant 0.785 0.79
fox 0.565 0.555
musk_1 0.800 0.667
musk_2 0.779 0.86
mutagenesis_1 0.833 0.728
mutagenesis_2 0.825 0.675
protein 0.947 0.863
tiger 0.810 0.715
ucsb_breast_cancer 0.780 0.64
winter_wren 0.991 0.908



Model-based clustering of graphs

Graph dataset (karate)
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Results of 2component SPSN
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Conclusion: density learning state of the art

1. Density learning on vector data
1.1 classical methods still valueable
1.2 deep models suitable for image data
1.3 space for new models on heterogenous data
1.4 challenges for complex problems (semantic data)

2. Density learning on set data
2.1 poor results of kernel methods
2.2 space for smart combination of set-embedding and feature-embedding
2.3 how to properly treat cardinality in anomaly detection?

3. Sum-product-set networks
3.1 elementary blocks are ready
3.2 computational speed
3.3 structure selection
3.4 anomaly score?


